Suppr超能文献

盐胁迫下丛枝菌根共生重塑野生酸枣的离子流和脂肪酸代谢。

Mycorrhizal symbiosis reprograms ion fluxes and fatty acid metabolism in wild jujube during salt stress.

机构信息

Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China.

Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China.

出版信息

Plant Physiol. 2022 Aug 1;189(4):2481-2499. doi: 10.1093/plphys/kiac239.

Abstract

Chinese jujube (Ziziphus jujuba) is an important fruit tree in China, and soil salinity is the main constraint affecting jujube production. It is unclear how arbuscular mycorrhizal (AM) symbiosis supports jujube adaptation to salt stress. Herein, we performed comparative physiological, ion flux, fatty acid (FA) metabolomic, and transcriptomic analyses to examine the mechanism of AM jujube responding to salt stress. AM seedlings showed better performance during salt stress. AM symbiosis altered phytohormonal levels: indole-3-acetic acid and abscisic acid contents were significantly increased in AM roots and reduced by salt stress. Mycorrhizal colonization enhanced root H+ efflux and K+ influx, while inducing expression of plasma membrane-type ATPase 7 (ZjAHA7) and high-affinity K+ transporter 2 (ZjHAK2) in roots. High K+/Na+ homeostasis was maintained throughout salt exposure. FA content was elevated in AM leaves as well as roots, especially for palmitic acid, oleic acid, trans oleic acid, and linoleic acid, and similar effects were also observed in AM poplar (Populus. alba × Populus. glandulosa cv. 84K) and Medicago truncatula, indicating AM symbiosis elevating FA levels could be a conserved physiological effect. Gene co-expression network analyses uncovered a core gene set including 267 genes in roots associated with AM symbiosis and conserved transcriptional responses, for example, FA metabolism, phytohormone signal transduction, SNARE interaction in vesicular transport, and biotin metabolism. In contrast to widely up-regulated genes related to FA metabolism in AM roots, limited genes were affected in leaves. We propose a model of AM symbiosis-linked reprogramming of FA metabolism and provide a comprehensive insight into AM symbiosis with a woody species adaptation to salt stress.

摘要

中国枣树(Ziziphus jujuba)是中国重要的果树之一,土壤盐度是影响枣树生产的主要限制因素。目前尚不清楚丛枝菌根(AM)共生如何支持枣树适应盐胁迫。在此,我们进行了比较生理、离子通量、脂肪酸(FA)代谢组学和转录组学分析,以研究 AM 枣树应对盐胁迫的机制。AM 苗在盐胁迫下表现出更好的性能。AM 共生改变了植物激素水平:AM 根中的吲哚-3-乙酸和脱落酸含量显著增加,而盐胁迫则降低了 AM 根中的吲哚-3-乙酸和脱落酸含量。菌根定殖增强了根的 H+外排和 K+内流,同时诱导了质膜型 ATP 酶 7(ZjAHA7)和高亲和力 K+转运体 2(ZjHAK2)在根部的表达。在整个盐暴露过程中,维持了高 K+/Na+的平衡。AM 叶片和根中的 FA 含量升高,特别是棕榈酸、油酸、反油酸和亚油酸,在 AM 杨树(Populus. alba × Populus. glandulosa cv. 84K)和紫花苜蓿中也观察到类似的效应,这表明 AM 共生提高 FA 水平可能是一种保守的生理效应。基因共表达网络分析揭示了一个核心基因集,包括与 AM 共生和保守转录反应相关的 267 个根基因,例如 FA 代谢、植物激素信号转导、囊泡运输中的 SNARE 相互作用和生物素代谢。与 AM 根中与 FA 代谢广泛上调的基因不同,叶片中受影响的基因有限。我们提出了一个与 AM 共生相关的 FA 代谢重编程模型,并为 AM 共生与木本植物适应盐胁迫提供了全面的见解。

相似文献

引用本文的文献

9
The role of arbuscular mycorrhizal symbiosis in plant abiotic stress.丛枝菌根共生在植物非生物胁迫中的作用。
Front Microbiol. 2024 Jan 18;14:1323881. doi: 10.3389/fmicb.2023.1323881. eCollection 2023.

本文引用的文献

10
Salt Tolerance Mechanisms of Plants.植物的耐盐机制。
Annu Rev Plant Biol. 2020 Apr 29;71:403-433. doi: 10.1146/annurev-arplant-050718-100005. Epub 2020 Mar 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验