Suppr超能文献

ISW-LM:一种用于早期 COVID-19 诊断的强化症状权重学习机制。

ISW-LM: An intensive symptom weight learning mechanism for early COVID-19 diagnosis.

机构信息

Department of Computing and Information Technology, Liaoning Normal University, Dalian City, Liaoning Province, China.

Department of Computing and Information Technology, Liaoning Normal University, Dalian City, Liaoning Province, China.

出版信息

Comput Biol Med. 2022 Jul;146:105615. doi: 10.1016/j.compbiomed.2022.105615. Epub 2022 May 17.

Abstract

The novel coronavirus disease 2019 (COVID-19) pandemic has severely impacted the world. The early diagnosis of COVID-19 and self-isolation can help curb the spread of the virus. Besides, a simple and accurate diagnostic method can help in making rapid decisions for the treatment and isolation of patients. The analysis of patient characteristics, case trajectory, comorbidities, symptoms, diagnosis, and outcomes will be performed in the model. In this paper, a symptom-based machine learning (ML) model with a new learning mechanism called Intensive Symptom Weight Learning Mechanism (ISW-LM) is proposed. The proposed model designs three new symptoms' weight functions to identify the most relevant symptoms used to diagnose and classify COVID-19. To verify the efficiency of the proposed model, multiple laboratory and clinical datasets containing epidemiological symptoms and blood tests are used. Experiments indicate that the importance of COVID-19 infection symptoms varies between countries and regions. In most datasets, the most frequent and significant predictive symptoms for diagnosing COVID-19 are fever, sore throat, and cough. The experiment also compares the state-of-the-art methods with the proposed method, which shows that the proposed model has a high accuracy rate of up to 97.1711%. The positive results indicate that the proposed learning mechanism can help clinicians quickly diagnose and screen patients for COVID-19 at an early stage.

摘要

2019 年新型冠状病毒病(COVID-19)大流行严重影响了世界。COVID-19 的早期诊断和自我隔离有助于遏制病毒的传播。此外,简单而准确的诊断方法有助于对患者的治疗和隔离做出快速决策。该模型将分析患者特征、病例轨迹、合并症、症状、诊断和结果。本文提出了一种基于症状的机器学习(ML)模型,该模型具有一种称为密集症状权重学习机制(ISW-LM)的新学习机制。所提出的模型设计了三个新的症状权重函数,以识别用于诊断和分类 COVID-19 的最相关症状。为了验证所提出模型的效率,使用了包含流行病学症状和血液检测的多个实验室和临床数据集。实验表明,COVID-19 感染症状的重要性因国家和地区而异。在大多数数据集中,用于诊断 COVID-19 的最常见和最显著的预测性症状是发烧、喉咙痛和咳嗽。实验还将最先进的方法与所提出的方法进行了比较,结果表明,所提出的模型的准确率高达 97.1711%。阳性结果表明,所提出的学习机制可以帮助临床医生在早期快速诊断和筛选 COVID-19 患者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验