Suppr超能文献

关于使用人工智能和机器学习抗击新冠疫情的系统综述。

A Systematic Review on the Use of AI and ML for Fighting the COVID-19 Pandemic.

作者信息

Islam Muhammad Nazrul, Inan Toki Tahmid, Rafi Suzzana, Akter Syeda Sabrina, Sarker Iqbal H, Islam A K M Najmul

机构信息

Department of Computer Science, and EngineeringMilitary Institute of Science and Technology Dhaka 1216 Bangladesh.

Department of Computer ScienceGeorge Mason University Fairfax VA 22031 USA.

出版信息

IEEE Trans Artif Intell. 2021 Mar 1;1(3):258-270. doi: 10.1109/TAI.2021.3062771. eCollection 2020 Dec.

Abstract

Artificial intelligence (AI) and machine learning (ML) have caused a paradigm shift in healthcare that can be used for decision support and forecasting by exploring medical data. Recent studies have shown that AI and ML can be used to fight COVID-19. The objective of this article is to summarize the recent AI- and ML-based studies that have addressed the pandemic. From an initial set of 634 articles, a total of 49 articles were finally selected through an inclusion-exclusion process. In this article, we have explored the objectives of the existing studies (i.e., the role of AI/ML in fighting the COVID-19 pandemic); the context of the studies (i.e., whether it was focused on a specific country-context or with a global perspective; the type and volume of the dataset; and the methodology, algorithms, and techniques adopted in the prediction or diagnosis processes). We have mapped the algorithms and techniques with the data type by highlighting their prediction/classification accuracy. From our analysis, we categorized the objectives of the studies into four groups: disease detection, epidemic forecasting, sustainable development, and disease diagnosis. We observed that most of these studies used deep learning algorithms on image-data, more specifically on chest X-rays and CT scans. We have identified six future research opportunities that we have summarized in this paper. Artificial intelligence (AI) and machine learning(ML) methods have been widely used to assist in the fight against COVID-19 pandemic. A very few in-depth literature reviews have been conducted to synthesize the knowledge and identify future research agenda including a previously published review on data science for COVID-19 in this article. In this article, we synthesized reviewed recent literature that focuses on the usages and applications of AI and ML to fight against COVID-19. We have identified seven future research directions that would guide researchers to conduct future research. The most significant of these are: develop new treatment options, explore the contextual effect and variation in research outcomes, support the health care workforce, and explore the effect and variation in research outcomes based on different types of data.

摘要

人工智能(AI)和机器学习(ML)已引发医疗保健领域的范式转变,通过挖掘医疗数据,可用于决策支持和预测。近期研究表明,AI和ML可用于抗击新冠疫情。本文旨在总结近期基于AI和ML的应对该疫情的研究。从最初的634篇文章中,最终通过纳入-排除流程筛选出49篇文章。在本文中,我们探讨了现有研究的目标(即AI/ML在抗击新冠疫情中的作用);研究背景(即是否聚焦于特定国家背景或具有全球视野;数据集的类型和规模;以及预测或诊断过程中采用的方法、算法和技术)。我们通过突出算法和技术的预测/分类准确率,将其与数据类型进行了映射。通过分析,我们将研究目标分为四类:疾病检测、疫情预测、可持续发展和疾病诊断。我们观察到,这些研究大多使用深度学习算法处理图像数据,更具体地说是胸部X光和CT扫描。我们确定了六个未来研究机会并在本文中进行了总结。人工智能(AI)和机器学习(ML)方法已被广泛用于协助抗击新冠疫情。很少有深入的文献综述来综合相关知识并确定未来研究议程,包括本文之前发表的关于新冠疫情数据科学的综述。在本文中,我们综合回顾了近期聚焦于AI和ML在抗击新冠疫情中的应用的文献。我们确定了七个未来研究方向,可指导研究人员开展未来研究。其中最重要的是:开发新的治疗方案、探索研究结果的背景效应和差异、支持医疗保健人员队伍,以及基于不同类型数据探索研究结果的效应和差异。

相似文献

1
A Systematic Review on the Use of AI and ML for Fighting the COVID-19 Pandemic.
IEEE Trans Artif Intell. 2021 Mar 1;1(3):258-270. doi: 10.1109/TAI.2021.3062771. eCollection 2020 Dec.
2
Combating COVID-19 Crisis using Artificial Intelligence (AI) Based Approach: Systematic Review.
Curr Top Med Chem. 2024;24(8):737-753. doi: 10.2174/0115680266282179240124072121.
6
Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review.
Chaos Solitons Fractals. 2020 Oct;139:110059. doi: 10.1016/j.chaos.2020.110059. Epub 2020 Jun 25.
7
Applications of artificial intelligence in COVID-19 pandemic: A comprehensive review.
Expert Syst Appl. 2021 Dec 15;185:115695. doi: 10.1016/j.eswa.2021.115695. Epub 2021 Aug 4.
8
Diagnosis of COVID-19 Using Machine Learning and Deep Learning: A Review.
Curr Med Imaging. 2021;17(12):1403-1418. doi: 10.2174/1573405617666210713113439.
9
Role of Machine Learning Techniques to Tackle the COVID-19 Crisis: Systematic Review.
JMIR Med Inform. 2021 Jan 11;9(1):e23811. doi: 10.2196/23811.
10
Artificial Intelligence and COVID-19: A Systematic umbrella review and roads ahead.
J King Saud Univ Comput Inf Sci. 2022 Sep;34(8):5898-5920. doi: 10.1016/j.jksuci.2021.07.010. Epub 2021 Jul 15.

引用本文的文献

1
Blockchain enabled collective and combined deep learning framework for COVID19 diagnosis.
Sci Rep. 2025 May 13;15(1):16527. doi: 10.1038/s41598-025-00252-7.
6
A Survey on COVID-19 Data Analysis Using AI, IoT, and Social Media.
Sensors (Basel). 2023 Jun 13;23(12):5543. doi: 10.3390/s23125543.
7
Influence of augmentation on the performance of the double ResNet-based model for chest X-ray classification.
Pol J Radiol. 2023 May 12;88:e244-e250. doi: 10.5114/pjr.2023.126717. eCollection 2023.
9
Predictis: an IoT and machine learning-based system to predict risk level of cardio-vascular diseases.
BMC Health Serv Res. 2023 Feb 20;23(1):171. doi: 10.1186/s12913-023-09104-4.
10
Combating Covid-19 using machine learning and deep learning: Applications, challenges, and future perspectives.
Array (N Y). 2023 Mar;17:100271. doi: 10.1016/j.array.2022.100271. Epub 2022 Dec 10.

本文引用的文献

1
RETRACTED ARTICLE: Deep learning system to screen coronavirus disease 2019 pneumonia.
Appl Intell (Dordr). 2023;53(4):4874. doi: 10.1007/s10489-020-01714-3. Epub 2020 Apr 22.
2
Predicting the growth and trend of COVID-19 pandemic using machine learning and cloud computing.
Internet Things (Amst). 2020 Sep;11:100222. doi: 10.1016/j.iot.2020.100222. Epub 2020 May 12.
3
A Review on the Mobile Applications Developed for COVID-19: An Exploratory Analysis.
IEEE Access. 2020 Aug 7;8:145601-145610. doi: 10.1109/ACCESS.2020.3015102. eCollection 2020.
4
Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks.
Pattern Anal Appl. 2021;24(3):1207-1220. doi: 10.1007/s10044-021-00984-y. Epub 2021 May 9.
5
Forecasting and Evaluating Multiple Interventions for COVID-19 Worldwide.
Front Artif Intell. 2020 May 22;3:41. doi: 10.3389/frai.2020.00041. eCollection 2020.
6
A deep learning algorithm using CT images to screen for Corona virus disease (COVID-19).
Eur Radiol. 2021 Aug;31(8):6096-6104. doi: 10.1007/s00330-021-07715-1. Epub 2021 Feb 24.
7
COVID-19 in Bangladesh: measuring differences in individual precautionary behaviors among young adults.
Z Gesundh Wiss. 2022;30(6):1473-1484. doi: 10.1007/s10389-020-01453-2. Epub 2021 Jan 6.
9
COVID faster R-CNN: A novel framework to Diagnose Novel Coronavirus Disease (COVID-19) in X-Ray images.
Inform Med Unlocked. 2020;20:100405. doi: 10.1016/j.imu.2020.100405. Epub 2020 Aug 1.
10
Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review.
Chaos Solitons Fractals. 2020 Oct;139:110059. doi: 10.1016/j.chaos.2020.110059. Epub 2020 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验