Suppr超能文献

重新审视半导体的光学带隙及其测定统一方法的提议。

Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination.

作者信息

Zanatta A R

机构信息

Instituto de Física de São Carlos, USP, São Carlos, 13560-970, SP, Brazil.

出版信息

Sci Rep. 2019 Aug 2;9(1):11225. doi: 10.1038/s41598-019-47670-y.

Abstract

Along the last two centuries, the story of semiconductor materials ranged from a mix of disbelief and frustration to one of the most successful technological achievements ever seen. Such a progress comprised the development of materials and models that, allied to the knowledge provided by spectroscopic techniques, resulted in the (nowadays) omnipresent electronic gadgets. Within this context, optically-based methods were of special importance since, amongst others, they presented details about the electronic states and energy bandgap E of semiconductors which, ultimately, decided about their application in devices. Stimulated by these aspects, this work investigated the semiconductors silicon, germanium, and gallium-arsenide in the crystalline (bulk and powder) and amorphous (film) forms. The detailed analysis of the experimental results indicates that accurate E values can be obtained by fitting a sigmoid (Boltzmann) function to their corresponding optical absorption spectra. The method is straightforward and, contrary to the traditional approaches to determine E, it is exempt from errors due to experimental spectra acquisition and data processing. Additionally, it complies with the requirements of direct, indirect, and amorphous bandgap semiconductors, and it is able to probe the (dis)order of the material as well. In view of these characteristics, a new-unified methodology based on the fitting of the absorption spectrum with a Boltzmann function is being proposed to efficiently determine the optical bandgap of semiconductor materials.

摘要

在过去的两个世纪里,半导体材料的发展历程从最初的怀疑与挫折交织,到如今成为有史以来最成功的技术成就之一。这一进展包括材料和模型的开发,这些材料和模型与光谱技术提供的知识相结合,造就了如今无处不在的电子设备。在此背景下,基于光学的方法尤为重要,因为它们揭示了半导体的电子态和能带隙E的细节,而这些最终决定了半导体在器件中的应用。受这些因素的启发,本研究考察了晶体(块状和粉末状)和非晶(薄膜)形式的半导体硅、锗和砷化镓。对实验结果的详细分析表明,通过将S形(玻尔兹曼)函数拟合到相应的光吸收光谱中,可以获得准确的E值。该方法简单直接,与传统的确定E的方法不同,它不受实验光谱采集和数据处理误差的影响。此外,它适用于直接带隙、间接带隙和非晶带隙半导体的要求,并且能够探测材料的有序(无序)状态。鉴于这些特性,本文提出了一种基于用玻尔兹曼函数拟合吸收光谱的新统一方法,以有效地确定半导体材料的光学带隙。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f032/6677798/b4d4e8ec001c/41598_2019_47670_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验