Suppr超能文献

一种用于长期细胞成像的包含温度控制和灌注系统的微流控芯片载体。

A microfluidic chip carrier including temperature control and perfusion system for long-term cell imaging.

作者信息

Cantoni Federico, Werr Gabriel, Barbe Laurent, Porras Ana Maria, Tenje Maria

机构信息

Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.

出版信息

HardwareX. 2021 Nov 6;10:e00245. doi: 10.1016/j.ohx.2021.e00245. eCollection 2021 Oct.

Abstract

Microfluidic devices are widely used for biomedical applications but there is still a lack of affordable, reliable and user-friendly systems for transferring microfluidic chips from an incubator to a microscope while maintaining physiological conditions when performing microscopy. The presented carrier represents a cost-effective option for sustaining environmental conditions of microfluidic chips in combination with minimizing the device manipulation required for reagent injection, media exchange or sample collection. The carrier, which has the outer dimension of a standard well plate size, contains an integrated perfusion system that can recirculate the media using piezo pumps, operated in either continuous or intermittent modes (50-1000 µl/min). Furthermore, a film resistive heater made from 37 µm-thick copper wires, including temperature feedback control, was used to maintain the microfluidic chip temperature at 37 °C when outside the incubator. The heater characterisation showed a uniform temperature distribution along the chip channel for perfusion flow rates up to 10 µl/min. To demonstrate the feasibility of our platform for long term cell culture monitoring, mouse brain endothelial cells (bEnd.3) were repeatedly monitored for a period of 10 days, demonstrating a system with both the versatility and the potential for long imaging in microphysiological system cell cultures.

摘要

微流控装置广泛应用于生物医学领域,但在将微流控芯片从培养箱转移到显微镜下并在进行显微镜检查时维持生理条件方面,仍缺乏经济实惠、可靠且用户友好的系统。所展示的载体是一种经济高效的选择,可维持微流控芯片的环境条件,同时将试剂注入、培养基更换或样品采集所需的设备操作降至最低。该载体的外部尺寸为标准孔板大小,包含一个集成灌注系统,该系统可使用压电泵使培养基循环,以连续或间歇模式(50 - 1000微升/分钟)运行。此外,一个由37微米厚的铜线制成的薄膜电阻加热器,包括温度反馈控制,用于在培养箱外将微流控芯片温度维持在37°C。加热器特性表明,对于高达10微升/分钟的灌注流速,芯片通道沿线温度分布均匀。为证明我们的平台用于长期细胞培养监测的可行性,对小鼠脑内皮细胞(bEnd.3)进行了为期10天的反复监测,证明了该系统在微生理系统细胞培养中具有多功能性和长时间成像的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ba/9123440/effa6be8487d/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验