Suppr超能文献

微心脏:一种用于微生理系统中功能性血管培养的微流控泵。

Microheart: A microfluidic pump for functional vascular culture in microphysiological systems.

机构信息

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

J Biomech. 2021 Apr 15;119:110330. doi: 10.1016/j.jbiomech.2021.110330. Epub 2021 Feb 14.

Abstract

Advances in microphysiological systems have prompted the need for long-term cell culture under physiological flow conditions. Conventional laboratory pumps typically lack the ability to deliver cell culture media at the low flow rates required to meet the physiological ranges of fluid flow, and are often pulsatile or require flow reversal. Here, a microfluidic-based pump is presented, which allows for the controlled delivery of media for vascular microphysiological applications. The performance of the pump was characterized in a range of microfluidic systems, including straight channels of varying dimensions and self-assembled microvascular networks. A theoretical framework was developed based on lumped element analysis to predict the performance of the pump for different fluidic configurations and a finite element model of the included check-valves. The use of the pump for microvascular physiological studies demonstrated the utility of this system to recapitulate vascular fluid transport phenomena in microphysiological systems, which may find applications in disease models and drug screening.

摘要

微生理系统的进步促使人们需要在生理流动条件下进行长期的细胞培养。传统的实验室用泵通常缺乏以满足生理流动范围所需的低流速输送细胞培养基的能力,而且通常是脉动的或需要流量反转。在这里,提出了一种基于微流控的泵,它允许为血管微生理应用控制培养基的输送。该泵的性能在一系列微流控系统中进行了表征,包括不同尺寸的直通道和自组装微血管网络。基于集中元件分析开发了一个理论框架,用于预测不同流体配置和包含止回阀的有限元模型的泵的性能。该泵在微血管生理研究中的使用证明了该系统在微生理系统中再现血管流体输送现象的实用性,这可能在疾病模型和药物筛选中得到应用。

相似文献

1
Microheart: A microfluidic pump for functional vascular culture in microphysiological systems.
J Biomech. 2021 Apr 15;119:110330. doi: 10.1016/j.jbiomech.2021.110330. Epub 2021 Feb 14.
2
A thermoplastic microfluidic microphysiological system to recapitulate hepatic function and multicellular interactions.
Biotechnol Bioeng. 2019 Dec;116(12):3409-3420. doi: 10.1002/bit.26986. Epub 2019 Oct 15.
5
Siphon-driven microfluidic passive pump with a yarn flow resistance controller.
Lab Chip. 2014 Nov 7;14(21):4213-9. doi: 10.1039/c4lc00510d.
9
Gravity-driven preprogrammed microfluidic recirculation system for parallel biosensing of cell behaviors.
Anal Chim Acta. 2022 Nov 15;1233:340456. doi: 10.1016/j.aca.2022.340456. Epub 2022 Sep 29.

引用本文的文献

1
Remodeling of self-assembled microvascular networks under long term flow.
bioRxiv. 2025 Mar 18:2025.03.17.643791. doi: 10.1101/2025.03.17.643791.
2
Measuring glymphatic function: Assessing the toolkit.
Neural Regen Res. 2026 Feb 1;21(2):534-541. doi: 10.4103/NRR.NRR-D-24-01013. Epub 2025 Mar 25.
3
Advancing Cardiac Organoid Engineering Through Application of Biophysical Forces.
IEEE Rev Biomed Eng. 2024 Dec 9;PP. doi: 10.1109/RBME.2024.3514378.
4
Personalized Vascularized Models of Breast Cancer Desmoplasia Reveal Biomechanical Determinants of Drug Delivery to the Tumor.
Adv Sci (Weinh). 2024 Oct;11(38):e2402757. doi: 10.1002/advs.202402757. Epub 2024 Jul 23.
5
A Pillar/Perfusion Plate Enhances Cell Growth, Reproducibility, Throughput, and User Friendliness in Dynamic 3D Cell Culture.
ACS Biomater Sci Eng. 2024 May 13;10(5):3478-3488. doi: 10.1021/acsbiomaterials.4c00179. Epub 2024 May 2.
7
Accelerating the in vitro emulation of Alzheimer's disease-associated phenotypes using a novel 3D blood-brain barrier neurosphere co-culture model.
Front Bioeng Biotechnol. 2023 Oct 9;11:1251195. doi: 10.3389/fbioe.2023.1251195. eCollection 2023.
8
Development of a perfusable, hierarchical microvasculature-on-a-chip model.
Lab Chip. 2023 Oct 10;23(20):4552-4564. doi: 10.1039/d3lc00512g.
9
Report of the Assay Guidance Workshop on 3-Dimensional Tissue Models for Antiviral Drug Development.
J Infect Dis. 2023 Oct 3;228(Suppl 5):S337-S354. doi: 10.1093/infdis/jiad334.

本文引用的文献

1
Microphysiological Systems: Design, Fabrication, and Applications.
ACS Biomater Sci Eng. 2020 Jun 8;6(6):3231-3257. doi: 10.1021/acsbiomaterials.9b01667. Epub 2020 May 10.
3
Fluid Shear Stress Sensing by the Endothelial Layer.
Front Physiol. 2020 Jul 24;11:861. doi: 10.3389/fphys.2020.00861. eCollection 2020.
4
Pericytes Contribute to Dysfunction in a Human 3D Model of Placental Microvasculature through VEGF-Ang-Tie2 Signaling.
Adv Sci (Weinh). 2019 Oct 29;6(23):1900878. doi: 10.1002/advs.201900878. eCollection 2019 Dec.
5
Reproducing human and cross-species drug toxicities using a Liver-Chip.
Sci Transl Med. 2019 Nov 6;11(517). doi: 10.1126/scitranslmed.aax5516.
7
An on-chip model of protein paracellular and transcellular permeability in the microcirculation.
Biomaterials. 2019 Aug;212:115-125. doi: 10.1016/j.biomaterials.2019.05.022. Epub 2019 May 13.
8
Human Microphysiological Systems and Organoids as Models for Toxicological Studies.
Front Public Health. 2018 Jul 10;6:185. doi: 10.3389/fpubh.2018.00185. eCollection 2018.
9
96 perfusable blood vessels to study vascular permeability in vitro.
Sci Rep. 2017 Dec 22;7(1):18071. doi: 10.1038/s41598-017-14716-y.
10
A microfluidic circulatory system integrated with capillary-assisted pressure sensors.
Lab Chip. 2017 Feb 14;17(4):653-662. doi: 10.1039/c6lc01427e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验