Hashemiesfahan Mehrnaz, Gelin Pierre, Maisto Antonio, Gardeniers Han, De Malsche Wim
µFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
Mesoscale Chemical Systems Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands.
Micromachines (Basel). 2024 Jan 27;15(2):191. doi: 10.3390/mi15020191.
Acoustofluidics is an emerging research field wherein either mixing or (bio)-particle separation is conducted. High-power acoustic streaming can produce more intense and rapid flow patterns, leading to faster and more efficient liquid mixing. However, without cooling, the temperature of the piezoelectric element that is used to supply acoustic power to the fluid could rise above 50% of the Curie point of the piezomaterial, thereby accelerating its aging degradation. In addition, the supply of excessive heat to a liquid may lead to irreproducible streaming effects and gas bubble formation. To control these phenomena, in this paper, we present a feedback temperature control system integrated into an acoustofluidic setup using bulk acoustic waves (BAWs) to elevate mass transfer and manipulation of particles. The system performance was tested by measuring mixing efficiency and determining the average velocity magnitude of acoustic streaming. The results show that the integrated temperature control system keeps the temperature at the set point even at high acoustic powers and improves the reproducibility of the acoustofluidic setup performance when the applied voltage is as high as 200 V.
声流体学是一个新兴的研究领域,主要进行混合或(生物)颗粒分离。高功率声流可以产生更强烈、更快速的流动模式,从而实现更快、更高效的液体混合。然而,如果不进行冷却,用于向流体提供声功率的压电元件的温度可能会上升到压电材料居里点的50%以上,从而加速其老化降解。此外,向液体供应过多热量可能会导致不可重复的流动效应和气泡形成。为了控制这些现象,在本文中,我们提出了一种集成到声流体装置中的反馈温度控制系统,该系统使用体声波(BAW)来提高传质和颗粒操纵能力。通过测量混合效率和确定声流的平均速度大小来测试系统性能。结果表明,即使在高声功率下集成温度控制系统也能将温度保持在设定点,并在施加电压高达200 V时提高了声流体装置性能的可重复性。