Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC - Universitat Politècnica de València, Valencia, Spain.
Med Phys. 2022 Aug;49(8):5616-5626. doi: 10.1002/mp.15792. Epub 2022 Jun 21.
Significant interest has been recently shown for using monolithic scintillation crystals in molecular imaging systems, such as positron emission tomography (PET) scanners. Monolithic-based PET scanners result in a lower cost and higher sensitivity, in contrast to systems based on the more conventional pixellated configuration. The monolithic design allows one to retrieve depth-of-interaction information of the impinging 511 keV photons without the need for additional hardware materials or complex positioning algorithms. However, the so-called edge-effect inherent to monolithic-based approaches worsens the detector performance toward the crystal borders due to the truncation of the light distribution, thus decreasing positioning accuracy.
The main goal of this work is to experimentally demonstrate the detector performance improvement when machine-learning artificial neural-network (NN) techniques are applied for positioning estimation in multiple monolithic scintillators optically coupled side-by-side.
In this work, we show the performance evaluation of two LYSO crystals of 33 × 25.4 × 10 mm optically coupled by means of a high refractive index adhesive compound (Meltmount, refractive index n = 1.70). A 12 × 12 silicon photomultiplier array has been used as photosensor. For comparison, the same detector configuration was tested for two additional coupling cases: (1) optical grease (n = 1.46) in between crystals, and (2) isolated crystals using black paint with an air gap at the interface (named standard configuration). Regarding 2D photon positioning (XY plane), we have tested two different methods: (1) a machine-learning artificial NN algorithm and (2) a squared-charge (SC) centroid technique.
At the interface region of the detector, the SC method achieved spatial resolutions of 1.7 ± 0.3, 2.4 ± 0.3, and 2.6 ± 0.4 mm full-width at half-maximum (FWHM) for the Meltmount, grease, and standard configurations, respectively. These values improve to 1.0 ± 0.2, 1.2 ± 0.2, and 1.2 ± 0.3 mm FWHM when the NN algorithm was employed. Regarding energy performance, resolutions of 18 ± 2%, 20 ± 2%, and 23 ± 3% were obtained at the interface region of the detector for Meltmount, grease, and standard configurations, respectively.
The results suggest that optically coupling together scintillators with a high refractive index adhesive, in combination with an NN algorithm, reduces edge-effects and makes it possible to build scanners with almost no gaps in between detectors.
最近,人们对在分子成像系统(如正电子发射断层扫描(PET)扫描仪)中使用整体闪烁晶体产生了浓厚的兴趣。与基于更传统的像素化配置的系统相比,基于整体的 PET 扫描仪具有更低的成本和更高的灵敏度。整体设计允许在无需额外硬件材料或复杂定位算法的情况下,获取撞击的 511keV 光子的相互作用深度信息。然而,由于光分布的截断,整体式方法固有的所谓边缘效应会恶化探测器在晶体边缘的性能,从而降低定位精度。
本工作的主要目的是实验证明,在多个光学耦合的整体闪烁体中应用机器学习人工神经网络(NN)技术进行定位估计时,探测器性能的提高。
在这项工作中,我们展示了两个 33×25.4×10mm 的 LYSO 晶体的性能评估,这些晶体通过高折射率胶合物(Meltmount,折射率 n=1.70)光学耦合。使用 12×12 硅光电倍增管阵列作为光电传感器。为了进行比较,还对相同的探测器配置进行了两种额外的耦合情况的测试:(1)晶体之间的光学油脂(n=1.46),(2)使用界面处的黑色油漆和空气间隙的隔离晶体(命名为标准配置)。关于二维光子定位(XY 平面),我们测试了两种不同的方法:(1)机器学习人工 NN 算法,(2)平方电荷(SC)质心技术。
在探测器的界面区域,SC 方法在 Meltmount、油脂和标准配置下分别实现了 1.7±0.3、2.4±0.3 和 2.6±0.4mm 的半高全宽(FWHM)的空间分辨率。当使用 NN 算法时,这些值分别提高到 1.0±0.2、1.2±0.2 和 1.2±0.3mm 的 FWHM。关于能量性能,在探测器的界面区域分别获得了 18±2%、20±2%和 23±3%的分辨率。
结果表明,使用高折射率胶合物将闪烁体光学耦合在一起,并结合 NN 算法,可以减少边缘效应,并有可能构建几乎没有探测器之间间隙的扫描仪。