Suppr超能文献

SNELM:用于COVID-19识别的挤压网络引导的极限学习机

SNELM: SqueezeNet-Guided ELM for COVID-19 Recognition.

作者信息

Zhang Yudong, Attique Khan Muhammad, Zhu Ziquan, Wang Shuihua

机构信息

School of Computing and Mathematical Sciences, University of Leicester, Leicester, LE1 7RH, UK.

Department of Computer Science, HITEC University Taxila, Taxila, Pakistan.

出版信息

Comput Syst Sci Eng. 2023 Jan 20;46(1):13-26. doi: 10.32604/csse.2023.034172.

Abstract

(Aim) The COVID-19 has caused 6.26 million deaths and 522.06 million confirmed cases till 17/May/2022. Chest computed tomography is a precise way to help clinicians diagnose COVID-19 patients. (Method) Two datasets are chosen for this study. The multiple-way data augmentation, including speckle noise, random translation, scaling, salt-and-pepper noise, vertical shear, Gamma correction, rotation, Gaussian noise, and horizontal shear, is harnessed to increase the size of the training set. Then, the SqueezeNet (SN) with complex bypass is used to generate SN features. Finally, the extreme learning machine (ELM) is used to serve as the classifier due to its simplicity of usage, quick learning speed, and great generalization performances. The number of hidden neurons in ELM is set to 2000. Ten runs of 10-fold cross-validation are implemented to generate impartial results. (Result) For the 296-image dataset, our SNELM model attains a sensitivity of 96.35 ± 1.50%, a specificity of 96.08 ± 1.05%, a precision of 96.10 ± 1.00%, and an accuracy of 96.22 ± 0.94%. For the 640-image dataset, the SNELM attains a sensitivity of 96.00 ± 1.25%, a specificity of 96.28 ± 1.16%, a precision of 96.28 ± 1.13%, and an accuracy of 96.14 ± 0.96%. (Conclusion) The proposed SNELM model is successful in diagnosing COVID-19. The performances of our model are higher than seven state-of-the-art COVID-19 recognition models.

摘要

(目的)截至2022年5月17日,新型冠状病毒肺炎(COVID-19)已导致626万人死亡,5.2206亿例确诊病例。胸部计算机断层扫描是帮助临床医生诊断COVID-19患者的一种精确方法。(方法)本研究选择了两个数据集。利用包括斑点噪声、随机平移、缩放、椒盐噪声、垂直剪切、伽马校正、旋转、高斯噪声和水平剪切在内的多向数据增强方法来增加训练集的大小。然后,使用具有复杂旁路的挤压网络(SqueezeNet,SN)来生成SN特征。最后,由于极限学习机(ELM)使用简单、学习速度快且泛化性能好,因此将其用作分类器。ELM中隐藏神经元的数量设置为2000。进行十次十折交叉验证以产生公正的结果。(结果)对于296图像数据集,我们的SNELM模型的灵敏度为96.35±1.50%,特异性为96.08±1.05%,精度为96.10±1.00%,准确率为96.22±0.94%。对于640图像数据集,SNELM模型灵敏度为96.00±1.25%,特异性为96.28±1.16%,精度为96.28±1.13%,准确率为96.14±0.96%。(结论)所提出的SNELM模型在诊断COVID-19方面是成功的。我们模型的性能高于七种最先进的COVID-19识别模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a186/7614503/212c20bebe06/EMS174790-f001.jpg

相似文献

1
SNELM: SqueezeNet-Guided ELM for COVID-19 Recognition.
Comput Syst Sci Eng. 2023 Jan 20;46(1):13-26. doi: 10.32604/csse.2023.034172.
2
VISPNN: VGG-inspired Stochastic Pooling Neural Network.
Comput Mater Contin. 2022;70(2):3081-3097. doi: 10.32604/cmc.2022.019447. Epub 2021 Sep 27.
3
COVID-19 Detection System Using Chest CT Images and Multiple Kernels-Extreme Learning Machine Based on Deep Neural Network.
Ing Rech Biomed. 2021 Aug;42(4):207-214. doi: 10.1016/j.irbm.2021.01.004. Epub 2021 Jan 27.
4
Epileptic Patient Activity Recognition System Using Extreme Learning Machine Method.
Biomedicines. 2023 Mar 7;11(3):816. doi: 10.3390/biomedicines11030816.
5
EEG-based emotion charting for Parkinson's disease patients using Convolutional Recurrent Neural Networks and cross dataset learning.
Comput Biol Med. 2022 May;144:105327. doi: 10.1016/j.compbiomed.2022.105327. Epub 2022 Mar 11.
7
Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors.
Environ Sci Pollut Res Int. 2017 Jul;24(20):16702-16724. doi: 10.1007/s11356-017-9283-z. Epub 2017 May 30.
8
A Seven-Layer Convolutional Neural Network for Chest CT-Based COVID-19 Diagnosis Using Stochastic Pooling.
IEEE Sens J. 2020 Sep 22;22(18):17573-17582. doi: 10.1109/JSEN.2020.3025855. eCollection 2022 Sep.
9
Extreme Learning Machine With Affine Transformation Inputs in an Activation Function.
IEEE Trans Neural Netw Learn Syst. 2019 Jul;30(7):2093-2107. doi: 10.1109/TNNLS.2018.2877468. Epub 2018 Nov 13.
10
Screening Lung Diseases Using Cascaded Feature Generation and Selection Strategies.
Healthcare (Basel). 2022 Jul 14;10(7):1313. doi: 10.3390/healthcare10071313.

引用本文的文献

1
LGD_Net: Capsule network with extreme learning machine for classification of lung diseases using CT scans.
PLoS One. 2025 Aug 8;20(8):e0327419. doi: 10.1371/journal.pone.0327419. eCollection 2025.
2
SNSVM: SqueezeNet-Guided SVM for Breast Cancer Diagnosis.
Comput Mater Contin. 2023 Aug 30;76(2):2201-2216. doi: 10.32604/cmc.2023.041191.
3
Electrophysiological analysis of ENG signals in patients with Covid-19.
IBRO Neurosci Rep. 2023 Aug 10;15:151-157. doi: 10.1016/j.ibneur.2023.08.002. eCollection 2023 Dec.

本文引用的文献

1
A Seven-Layer Convolutional Neural Network for Chest CT-Based COVID-19 Diagnosis Using Stochastic Pooling.
IEEE Sens J. 2020 Sep 22;22(18):17573-17582. doi: 10.1109/JSEN.2020.3025855. eCollection 2022 Sep.
2
Novel Feature Selection and Voting Classifier Algorithms for COVID-19 Classification in CT Images.
IEEE Access. 2020 Sep 30;8:179317-179335. doi: 10.1109/ACCESS.2020.3028012. eCollection 2020.
3
A Weakly-Supervised Framework for COVID-19 Classification and Lesion Localization From Chest CT.
IEEE Trans Med Imaging. 2020 Aug;39(8):2615-2625. doi: 10.1109/TMI.2020.2995965.
4
COVID-19 PCR Test, Cluster of False Positive and Importance of Quality Control.
Clin Lab. 2020 Oct 1;66(10). doi: 10.7754/Clin.Lab.2020.200629.
5
A deep learning approach to characterize 2019 coronavirus disease (COVID-19) pneumonia in chest CT images.
Eur Radiol. 2020 Dec;30(12):6517-6527. doi: 10.1007/s00330-020-07044-9. Epub 2020 Jul 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验