Zhang Yudong, Attique Khan Muhammad, Zhu Ziquan, Wang Shuihua
School of Computing and Mathematical Sciences, University of Leicester, Leicester, LE1 7RH, UK.
Department of Computer Science, HITEC University Taxila, Taxila, Pakistan.
Comput Syst Sci Eng. 2023 Jan 20;46(1):13-26. doi: 10.32604/csse.2023.034172.
(Aim) The COVID-19 has caused 6.26 million deaths and 522.06 million confirmed cases till 17/May/2022. Chest computed tomography is a precise way to help clinicians diagnose COVID-19 patients. (Method) Two datasets are chosen for this study. The multiple-way data augmentation, including speckle noise, random translation, scaling, salt-and-pepper noise, vertical shear, Gamma correction, rotation, Gaussian noise, and horizontal shear, is harnessed to increase the size of the training set. Then, the SqueezeNet (SN) with complex bypass is used to generate SN features. Finally, the extreme learning machine (ELM) is used to serve as the classifier due to its simplicity of usage, quick learning speed, and great generalization performances. The number of hidden neurons in ELM is set to 2000. Ten runs of 10-fold cross-validation are implemented to generate impartial results. (Result) For the 296-image dataset, our SNELM model attains a sensitivity of 96.35 ± 1.50%, a specificity of 96.08 ± 1.05%, a precision of 96.10 ± 1.00%, and an accuracy of 96.22 ± 0.94%. For the 640-image dataset, the SNELM attains a sensitivity of 96.00 ± 1.25%, a specificity of 96.28 ± 1.16%, a precision of 96.28 ± 1.13%, and an accuracy of 96.14 ± 0.96%. (Conclusion) The proposed SNELM model is successful in diagnosing COVID-19. The performances of our model are higher than seven state-of-the-art COVID-19 recognition models.
(目的)截至2022年5月17日,新型冠状病毒肺炎(COVID-19)已导致626万人死亡,5.2206亿例确诊病例。胸部计算机断层扫描是帮助临床医生诊断COVID-19患者的一种精确方法。(方法)本研究选择了两个数据集。利用包括斑点噪声、随机平移、缩放、椒盐噪声、垂直剪切、伽马校正、旋转、高斯噪声和水平剪切在内的多向数据增强方法来增加训练集的大小。然后,使用具有复杂旁路的挤压网络(SqueezeNet,SN)来生成SN特征。最后,由于极限学习机(ELM)使用简单、学习速度快且泛化性能好,因此将其用作分类器。ELM中隐藏神经元的数量设置为2000。进行十次十折交叉验证以产生公正的结果。(结果)对于296图像数据集,我们的SNELM模型的灵敏度为96.35±1.50%,特异性为96.08±1.05%,精度为96.10±1.00%,准确率为96.22±0.94%。对于640图像数据集,SNELM模型灵敏度为96.00±1.25%,特异性为96.28±1.16%,精度为96.28±1.13%,准确率为96.14±0.96%。(结论)所提出的SNELM模型在诊断COVID-19方面是成功的。我们模型的性能高于七种最先进的COVID-19识别模型。