一种基于胸部CT利用随机池化的用于COVID-19诊断的七层卷积神经网络。

A Seven-Layer Convolutional Neural Network for Chest CT-Based COVID-19 Diagnosis Using Stochastic Pooling.

作者信息

Zhang Yudong, Satapathy Suresh Chandra, Zhu Li-Yao, Gorriz Juan Manuel, Wang Shuihua

机构信息

School of InformaticsUniversity of Leicester Leicester LE1 7RH U.K.

School of Computer EngineeringKIIT Deemed to University Bhubaneswar 751024 India.

出版信息

IEEE Sens J. 2020 Sep 22;22(18):17573-17582. doi: 10.1109/JSEN.2020.3025855. eCollection 2022 Sep.

Abstract

(Aim) COVID-19 pandemic causes numerous death tolls till now. Chest CT is an effective imaging sensor system to make accurate diagnosis. (Method) This article proposed a novel seven layer convolutional neural network based smart diagnosis model for COVID-19 diagnosis (7L-CNN-CD). We proposed a 14-way data augmentation to enhance the training set, and introduced stochastic pooling to replace traditional pooling methods. (Results) The 10 runs of 10-fold cross validation experiment show that our 7L-CNN-CD approach achieves a sensitivity of 94.44±0.73, a specificity of 93.63±1.60, and an accuracy of 94.03±0.80. (Conclusion) Our proposed 7L-CNN-CD is effective in diagnosing COVID-19 in chest CT images. It gives better performance than several state-of-the-art algorithms. The data augmentation and stochastic pooling methods are proven to be effective.

摘要

(目的)截至目前,新冠疫情已导致众多死亡病例。胸部CT是进行准确诊断的有效成像传感系统。(方法)本文提出了一种基于新型七层卷积神经网络的新冠诊断智能诊断模型(7L-CNN-CD)。我们提出了一种14种方式的数据增强方法来扩充训练集,并引入随机池化来替代传统池化方法。(结果)10次运行的10折交叉验证实验表明,我们的7L-CNN-CD方法灵敏度达到94.44±0.73,特异性达到93.63±1.60,准确率达到94.03±0.80。(结论)我们提出的7L-CNN-CD在胸部CT图像中诊断新冠方面是有效的。它比几种当前最先进的算法表现更好。数据增强和随机池化方法被证明是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0377/9564037/431d1398b912/zhang1-3025855.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索