Univ Lyon, UJM-Saint-Etienne, CNRS, IOGS, Laboratoire Hubert Curien, UMR5516, St-Etienne, 42023, France.
Univ Lyon, Mines Saint-Etienne, CNRS, Centre SMS, Laboratoire Georges Friedel, UMR5307, St-Etienne, 42023, France.
Adv Sci (Weinh). 2022 Jul;9(21):e2200761. doi: 10.1002/advs.202200761. Epub 2022 May 26.
The capacity to synthesize and design highly intricated nanoscale objects of different sizes, surfaces, and shapes dramatically conditions the development of multifunctional nanomaterials. Ultrafast laser technology holds great promise as a contactless process able to rationally and rapidly manufacture complex nanostructures bringing innovative surface functions. The most critical challenge in controlling the growth of laser-induced structures below the light diffraction limit is the absence of external order associated to the inherent local interaction due to the self-organizing nature of the phenomenon. Here high aspect-ratio nanopatterns driven by near-field surface coupling and architectured by timely-controlled polarization pulse shaping are reported. Electromagnetic coupled with hydrodynamic simulations reveal why this unique optical manipulation allows peaks generation by inhomogeneous local absorption sustained by nanoscale convection. The obtained high aspect-ratio surface nanotopography is expected to prevent bacterial proliferation, and have great potential for catalysis, vacuum to deep UV photonics and sensing.
合成和设计不同尺寸、表面和形状的高度复杂纳米物体的能力极大地影响了多功能纳米材料的发展。超快激光技术作为一种非接触式工艺具有很大的潜力,能够合理快速地制造具有创新表面功能的复杂纳米结构。在光衍射极限以下控制激光诱导结构生长的最关键挑战是缺乏与固有局部相互作用相关的外部有序性,这是由于现象的自组织性质。本文报道了由近场表面耦合驱动并通过及时控制偏振脉冲整形构造的高纵横比纳米图案。电磁与流体动力学模拟揭示了为什么这种独特的光学操纵能够通过纳米尺度对流维持的非均匀局部吸收产生峰值。预计所获得的高纵横比表面纳米形貌能够防止细菌增殖,并在催化、真空到深紫外光子学和传感方面具有很大的潜力。