Papaioannou Vasilios, Czosnyka Zofia, Czosnyka Marek
Department of Intensive Care Medicine, Alexandroupolis Hospital, Democritus University of Thrace, 68100, Alexandroupolis, Greece.
Academic Neurosurgery Unit, Brain Physics Lab, Addenbrooke's Hospital, P.O. Box 167, CB20QQ, Cambridge, UK.
Intensive Care Med Exp. 2022 May 27;10(1):20. doi: 10.1186/s40635-022-00452-9.
Hydrocephalus (HCP) is far more complicated than a simple disorder of cerebrospinal fluid (CSF) circulation. HCP is a common complication in patients with subarachnoid hemorrhage (SAH) and after craniectomy. Clinical measurement in HCP is mainly related to intracranial pressure (ICP) and cerebral blood flow. The ability to obtain quantitative variables that describe CSF dynamics at the bedside before potential shunting may support clinical intuition with a description of CSF dysfunction and differentiation between normal pressure hydrocephalus and brain atrophy. This review discusses the advanced research on HCP and how CSF is generated, stored and absorbed within the context of a mathematical model developed by Marmarou. Then, we proceed to explain the main quantification analysis of CSF dynamics using infusion techniques for deciding on definitive treatment. We consider that such descriptions of multiple parameters of measurements need to be significantly appreciated by the caring neuro-intensivist, for better understanding of the complex pathophysiology and clinical management and finally, improve of the prognosis of these patients with HCP.
脑积水(HCP)远比单纯的脑脊液(CSF)循环紊乱复杂得多。脑积水是蛛网膜下腔出血(SAH)患者及颅骨切除术后的常见并发症。脑积水的临床测量主要与颅内压(ICP)和脑血流量有关。在进行潜在分流之前,能够在床边获取描述脑脊液动力学的定量变量,可能有助于通过描述脑脊液功能障碍以及区分正常压力脑积水和脑萎缩来支持临床直觉。本综述讨论了关于脑积水的前沿研究,以及在马尔马罗建立的数学模型背景下脑脊液是如何生成、储存和吸收的。然后,我们将解释使用输注技术对脑脊液动力学进行的主要定量分析,以决定最终治疗方案。我们认为,负责的神经重症监护医生需要充分理解这些多参数测量描述,以便更好地理解复杂的病理生理学和临床管理,最终改善这些脑积水患者的预后。