Suppr超能文献

基于补丁的稀疏视角微计算机断层三维体积投影数据的伪影减少。

Patch-based artifact reduction for three-dimensional volume projection data of sparse-view micro-computed tomography.

机构信息

Graduate School of Science and Engineering, Chiba University, Chiba, 263-8522, Japan.

Center for Frontier Medical Engineering, Chiba University, Chiba, 263-8522, Japan.

出版信息

Radiol Phys Technol. 2022 Sep;15(3):206-223. doi: 10.1007/s12194-022-00661-7. Epub 2022 May 27.

Abstract

Micro-computed tomography (micro-CT) enables the non-destructive acquisition of three-dimensional (3D) morphological structures at the micrometer scale. Although it is expected to be used in pathology and histology to analyze the 3D microstructure of tissues, micro-CT imaging of tissue specimens requires a long scan time. A high-speed imaging method, sparse-view CT, can reduce the total scan time and radiation dose; however, it causes severe streak artifacts on tomographic images reconstructed with analytical algorithms due to insufficient sampling. In this paper, we propose an artifact reduction method for 3D volume projection data from sparse-view micro-CT. Specifically, we developed a patch-based lightweight fully convolutional network to estimate full-view 3D volume projection data from sparse-view 3D volume projection data. We evaluated the effectiveness of the proposed method using physically acquired datasets. The qualitative and quantitative results showed that the proposed method achieved high estimation accuracy and suppressed streak artifacts in the reconstructed images. In addition, we confirmed that the proposed method requires both short training and prediction times. Our study demonstrates that the proposed method has great potential for artifact reduction for 3D volume projection data under sparse-view conditions.

摘要

微计算机断层扫描(micro-CT)能够非破坏性地获取微米级的三维(3D)形态结构。尽管它有望在病理学和组织学中用于分析组织的 3D 微观结构,但对组织标本进行 micro-CT 成像需要较长的扫描时间。高速成像方法,稀疏视角 CT,可以减少总扫描时间和辐射剂量;然而,由于采样不足,它会导致在分析算法重建的断层图像上出现严重的条纹伪影。在本文中,我们提出了一种用于稀疏视角 micro-CT 的三维体积投影数据的伪影减少方法。具体来说,我们开发了一种基于补丁的轻量级全卷积网络,用于从稀疏视角三维体积投影数据估计全视角三维体积投影数据。我们使用物理采集的数据集评估了所提出方法的有效性。定性和定量结果表明,所提出的方法实现了高估计精度,并抑制了重建图像中的条纹伪影。此外,我们确认所提出的方法需要短的训练和预测时间。我们的研究表明,该方法在稀疏视角条件下对三维体积投影数据的伪影减少具有很大的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验