Institute of Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow, Russia.
Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France.
Biosensors (Basel). 2022 May 5;12(5):300. doi: 10.3390/bios12050300.
Surface-enhanced Raman scattering (SERS) spectroscopy is a surface- or cavity-enhanced variant of Raman scattering spectroscopy that allows the detection of analytes with a sensitivity down to single molecules. This method involves the use of SERS-active surfaces or cavities capable of concentrating incident radiation into small mode volumes containing the analyte. Here, we have engineered an ultranarrow metal-dielectric nano-cavity out of a film of the receptor-binding domain (RBD) of SARS-CoV-2 spike (S) glycoprotein and a silver surface, held together by interaction between reduced protein sulfhydryl groups and silver. The concentration of light in this nano-cavity allows the label-free recording of the characteristic Raman spectra of protein samples smaller than 1 pg. This is sufficient for the ultrasensitive detection of viral protein antigens at physiologically relevant levels. Moreover, the protein SERS signal can be increased by several orders of magnitude by coating the RBD film with a nanometer-thick silver shell, thereby raising the cavity Q-factor. This ensures a sub-femtogram sensitivity of the viral antigen detection. A simple theoretical model explaining the observed additional enhancement of the SERS signal from the silver-coated protein is proposed. Our study is the first to obtain the characteristic Raman and SERS spectra of the RBD of S glycoprotein, the key SARS-CoV-2 viral antigen, directly, without the use of Raman-reporter molecules. Thus, our approach allows label-free recording of the characteristic spectra of viral antigens at concentrations orders of magnitude lower than those required for detecting the whole virus in biological media. This makes it possible to develop a high-performance optical detection method and conformational analysis of the pathogen and its variants.
表面增强拉曼散射(SERS)光谱学是一种表面增强或腔增强拉曼散射光谱学的变体,它允许对分析物进行检测,其灵敏度可低至单个分子。该方法涉及使用能够将入射辐射集中到包含分析物的小模式体积中的 SERS 活性表面或腔。在这里,我们通过相互作用将 SARS-CoV-2 刺突(S)糖蛋白的受体结合域(RBD)的薄膜与银表面工程制成超窄的金属-介电纳米腔。在这种纳米腔中,光的浓度允许记录小于 1 pg 的蛋白质样品的特征拉曼光谱,这足以在生理相关水平上超灵敏地检测病毒蛋白抗原。此外,通过在 RBD 薄膜上涂覆纳米厚的银壳,可以将蛋白质的 SERS 信号提高几个数量级,从而提高腔的 Q 因子。这确保了病毒抗原检测的亚皮克灵敏度。提出了一个简单的理论模型,解释了观察到的来自涂覆银的蛋白质的 SERS 信号的额外增强。我们的研究首次直接获得了 S 糖蛋白的 RBD 的特征拉曼和 SERS 光谱,这是 SARS-CoV-2 病毒的关键抗原,而无需使用拉曼报告分子。因此,我们的方法允许在比在生物介质中检测整个病毒低几个数量级的浓度下记录病毒抗原的特征光谱。这使得能够开发一种高性能的光学检测方法和对病原体及其变体的构象分析。