Choi Soohee, Kim Suree, Park Jiyoung, Lee Seung Eun, Kim Chaewon, Kang Dongmin
Department of Life Science, Fluorescence Core Imaging Center, Ewha Womans University, Seoul 03760, Korea.
Antioxidants (Basel). 2022 May 20;11(5):1009. doi: 10.3390/antiox11051009.
Diclofenac, a nonsteroidal anti-inflammatory drug (NSAID) used to treat inflammatory diseases induces cellular toxicity by increasing the production of reactive oxygen species (ROS) and impairing autophagic flux. In this study, we investigated whether diclofenac induces cancer cell death and the mechanism by which diclofenac causes cell death. We observed that diclofenac induces mitotic arrest with a half-maximal effective concentration of 170 μM and cell death with a half-maximal lethal dose of 200 µM during 18-h incubation in HeLa cells. Cellular microtubule imaging and in vitro tubulin polymerization assays demonstrated that treatment with diclofenac elicits microtubule destabilization. Autophagy relies on microtubule-mediated transport and the fusion of autophagic vesicles. We observed that diclofenac inhibits both phagophore movement, an early step of autophagy, and the fusion of autophagosomes and lysosomes, a late step of autophagy. Diclofenac also induces the fragmentation of mitochondria and the Golgi during cell death. We found that diclofenac induces cell death further in combination with 5-fuorouracil, a DNA replication inhibitor than in single treatment in cancer cells. Pancreatic cancer cells, which have high basal autophagy, are particularly sensitive to cell death by diclofenac. Our study suggests that microtubule destabilization by diclofenac induces cancer cell death via compromised spindle assembly checkpoints and increased ROS through impaired autophagy flux. Diclofenac may be a candidate therapeutic drug in certain type of cancers by inhibiting microtubule-mediated cellular events in combination with clinically utilized nucleoside metabolic inhibitors, including 5-fluorouracil, to block cancer cell proliferation.
双氯芬酸是一种用于治疗炎症性疾病的非甾体抗炎药(NSAID),它通过增加活性氧(ROS)的产生和损害自噬通量来诱导细胞毒性。在本研究中,我们调查了双氯芬酸是否诱导癌细胞死亡以及双氯芬酸导致细胞死亡的机制。我们观察到,在HeLa细胞中孵育18小时期间,双氯芬酸诱导有丝分裂停滞,其半数有效浓度为170μM,诱导细胞死亡,其半数致死剂量为200μM。细胞微管成像和体外微管蛋白聚合试验表明,双氯芬酸处理会引起微管不稳定。自噬依赖于微管介导的运输和自噬小泡的融合。我们观察到,双氯芬酸既抑制自噬的早期步骤——吞噬泡移动,也抑制自噬的晚期步骤——自噬体与溶酶体的融合。双氯芬酸还在细胞死亡期间诱导线粒体和高尔基体的碎片化。我们发现,与DNA复制抑制剂5-氟尿嘧啶联合使用时,双氯芬酸在癌细胞中比单一处理更能进一步诱导细胞死亡。具有高基础自噬水平的胰腺癌细胞对双氯芬酸诱导的细胞死亡特别敏感。我们的研究表明,双氯芬酸引起的微管不稳定通过损害纺锤体组装检查点和通过受损的自噬通量增加ROS来诱导癌细胞死亡。双氯芬酸通过与包括5-氟尿嘧啶在内的临床使用的核苷代谢抑制剂联合抑制微管介导的细胞事件来阻断癌细胞增殖,可能是某些类型癌症的候选治疗药物。