Suppr超能文献

使用深度学习的超声心动图自动心内膜边界检测和左心室功能评估

Automated Endocardial Border Detection and Left Ventricular Functional Assessment in Echocardiography Using Deep Learning.

作者信息

Ono Shunzaburo, Komatsu Masaaki, Sakai Akira, Arima Hideki, Ochida Mie, Aoyama Rina, Yasutomi Suguru, Asada Ken, Kaneko Syuzo, Sasano Tetsuo, Hamamoto Ryuji

机构信息

Department of Cardiovascular Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.

Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.

出版信息

Biomedicines. 2022 May 6;10(5):1082. doi: 10.3390/biomedicines10051082.

Abstract

Endocardial border detection is a key step in assessing left ventricular systolic function in echocardiography. However, this process is still not sufficiently accurate, and manual retracing is often required, causing time-consuming and intra-/inter-observer variability in clinical practice. To address these clinical issues, more accurate and normalized automatic endocardial border detection would be valuable. Here, we develop a deep learning-based method for automated endocardial border detection and left ventricular functional assessment in two-dimensional echocardiographic videos. First, segmentation of the left ventricular cavity was performed in the six representative projections for a cardiac cycle. We employed four segmentation methods: U-Net, UNet++, UNet3+, and Deep Residual U-Net. UNet++ and UNet3+ showed a sufficiently high performance in the mean value of intersection over union and Dice coefficient. The accuracy of the four segmentation methods was then evaluated by calculating the mean value for the estimation error of the echocardiographic indexes. UNet++ was superior to the other segmentation methods, with the acceptable mean estimation error of the left ventricular ejection fraction of 10.8%, global longitudinal strain of 8.5%, and global circumferential strain of 5.8%, respectively. Our method using UNet++ demonstrated the best performance. This method may potentially support examiners and improve the workflow in echocardiography.

摘要

心内膜边界检测是超声心动图评估左心室收缩功能的关键步骤。然而,这一过程仍不够准确,临床实践中常常需要人工重新追踪,导致耗时且存在观察者内/间差异。为解决这些临床问题,更准确且标准化的自动心内膜边界检测将很有价值。在此,我们开发了一种基于深度学习的方法,用于二维超声心动图视频中的自动心内膜边界检测和左心室功能评估。首先,在心动周期的六个代表性投影中对左心室腔进行分割。我们采用了四种分割方法:U-Net、UNet++、UNet3+和深度残差U-Net。UNet++和UNet3+在交并比均值和Dice系数方面表现出足够高的性能。然后通过计算超声心动图指标估计误差的均值来评估这四种分割方法的准确性。UNet++优于其他分割方法,左心室射血分数、整体纵向应变和整体圆周应变的平均估计误差分别为可接受的10.8%、8.5%和5.8%。我们使用UNet++的方法表现出最佳性能。该方法可能会为检查人员提供支持并改善超声心动图的工作流程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/9138644/31fff877ace1/biomedicines-10-01082-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验