Figarol Agathe, Olive Lucile, Joubert Olivier, Ferrari Luc, Rihn Bertrand H, Sarry Frédéric, Beyssen Denis
Institut FEMTO-ST, UMR CNRS 6174, Université de Bourgogne Franche-Comté, F-25030 Besançon, France.
Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France.
Biomedicines. 2022 May 18;10(5):1166. doi: 10.3390/biomedicines10051166.
Medical imaging has relied on ultrasound (US) as an exploratory method for decades. Nonetheless, in cell biology, the numerous US applications are mainly in the research and development phase. In this review, we report the main effects on human or mammal cells of US induced by bulk or surface acoustic waves (SAW). At low frequencies, bulk US can lead to cell death. Under specific intensities and exposure times, however, cell proliferation and migration can be enhanced through cytoskeleton fluidization (a reorganization of the actin filaments and microtubules). Cavitation phenomena, frequencies of resonance close to those of the biological compounds, and mechanical transfers of energy from the acoustic pressure could explain those biological outcomes. At higher frequencies, no cavitation is observed. However, USs of high frequency stimulate ionic channels and increase cell permeability and transfection potency. Surface acoustic waves are increasingly exploited in microfluidics, especially for precise cell manipulations and cell sorting. With applications in diagnosis, infection, cancer treatment, or wound healing, US has remarkable potential. More mechanotransduction studies would be beneficial to understand the distinct roles of temperature rise, acoustic streaming and mechanical and electrical stimuli in the field.
几十年来,医学成像一直依赖超声(US)作为一种探测方法。尽管如此,在细胞生物学领域,众多超声应用主要仍处于研发阶段。在本综述中,我们报告了体声波或表面声波(SAW)所引发的超声对人或哺乳动物细胞的主要影响。在低频时,体超声可导致细胞死亡。然而,在特定强度和暴露时间下,细胞增殖和迁移可通过细胞骨架流化(肌动蛋白丝和微管的重新组织)得以增强。空化现象、与生物化合物共振频率相近以及声压能量的机械传递可以解释这些生物学结果。在较高频率下,未观察到空化现象。然而,高频超声会刺激离子通道并增加细胞通透性和转染效力。表面声波在微流体中得到越来越多的应用,特别是用于精确的细胞操作和细胞分选。超声在诊断、感染、癌症治疗或伤口愈合等方面有应用,具有显著潜力。更多的机械转导研究将有助于理解温度升高、声流以及机械和电刺激在该领域的不同作用。