Radojković Miloš, Gugliandolo Giovanni, Latino Mariangela, Marinković Zlatica, Crupi Giovanni, Donato Nicola
Faculty of Electronic Engineering, University of Niš, 18000 Niš, Serbia.
Department of Engineering, University of Messina, 98166 Messina, Italy.
Micromachines (Basel). 2023 Apr 28;14(5):967. doi: 10.3390/mi14050967.
In this paper, a novel approach is proposed for modeling the temperature-dependent behavior of a surface acoustic wave (SAW) resonator, by using a combination of a lumped-element equivalent circuit model and artificial neural networks (ANNs). More specifically, the temperature dependence of the equivalent circuit parameters/elements (ECPs) is modeled using ANNs, making the equivalent circuit model temperature-dependent. The developed model is validated by using scattering parameter measurements performed on a SAW device with a nominal resonant frequency of 423.22 MHz and under different temperature conditions (i.e., from 0 °C to 100 °C). The extracted ANN-based model can be used for simulation of the SAW resonator RF characteristics in the considered temperature range without the need for further measurements or equivalent circuit extraction procedures. The accuracy of the developed ANN-based model is comparable to that of the original equivalent circuit model.
本文提出了一种新颖的方法,通过结合集总元件等效电路模型和人工神经网络(ANN)来对表面声波(SAW)谐振器的温度相关行为进行建模。更具体地说,使用人工神经网络对等效电路参数/元件(ECP)的温度依赖性进行建模,使等效电路模型具有温度依赖性。通过对一个标称谐振频率为423.22 MHz的SAW器件在不同温度条件下(即从0°C到100°C)进行散射参数测量,对所开发的模型进行了验证。所提取的基于人工神经网络的模型可用于在所考虑的温度范围内模拟SAW谐振器的射频特性,而无需进一步测量或等效电路提取过程。所开发的基于人工神经网络的模型的精度与原始等效电路模型相当。