Suppr超能文献

具有深度神经网络的概率模型。

Probabilistic Models with Deep Neural Networks.

作者信息

Masegosa Andrés R, Cabañas Rafael, Langseth Helge, Nielsen Thomas D, Salmerón Antonio

机构信息

Department of Mathematics, Center for the Development and Transfer of Mathematical Research to Industry (CDTIME), University of Almería, 04120 Almería, Spain.

Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), CH-6962 Lugano, Switzerland.

出版信息

Entropy (Basel). 2021 Jan 18;23(1):117. doi: 10.3390/e23010117.

Abstract

Recent advances in statistical inference have significantly expanded the toolbox of probabilistic modeling. Historically, probabilistic modeling has been constrained to very restricted model classes, where exact or approximate probabilistic inference is feasible. However, developments in variational inference, a general form of approximate probabilistic inference that originated in statistical physics, have enabled probabilistic modeling to overcome these limitations: (i) Approximate probabilistic inference is now possible over a broad class of probabilistic models containing a large number of parameters, and (ii) scalable inference methods based on stochastic gradient descent and distributed computing engines allow probabilistic modeling to be applied to massive data sets. One important practical consequence of these advances is the possibility to include deep neural networks within probabilistic models, thereby capturing complex non-linear stochastic relationships between the random variables. These advances, in conjunction with the release of novel probabilistic modeling toolboxes, have greatly expanded the scope of applications of probabilistic models, and allowed the models to take advantage of the recent strides made by the deep learning community. In this paper, we provide an overview of the main concepts, methods, and tools needed to use deep neural networks within a probabilistic modeling framework.

摘要

统计推断方面的最新进展显著扩展了概率建模的工具集。从历史上看,概率建模一直局限于非常受限的模型类别,在这些类别中精确或近似概率推断是可行的。然而,变分推断(一种起源于统计物理学的近似概率推断的一般形式)的发展使概率建模能够克服这些限制:(i)现在可以在包含大量参数的广泛概率模型类别上进行近似概率推断,并且(ii)基于随机梯度下降和分布式计算引擎的可扩展推断方法允许概率建模应用于海量数据集。这些进展的一个重要实际结果是有可能将深度神经网络纳入概率模型,从而捕捉随机变量之间复杂的非线性随机关系。这些进展,再加上新型概率建模工具箱的发布,极大地扩展了概率模型的应用范围,并使模型能够利用深度学习社区最近取得的进展。在本文中,我们概述了在概率建模框架内使用深度神经网络所需的主要概念、方法和工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验