Suppr超能文献

SADLN:基于自注意力机制的整合多组学数据用于癌症亚型识别的深度学习网络。

SADLN: Self-attention based deep learning network of integrating multi-omics data for cancer subtype recognition.

作者信息

Sun Qiuwen, Cheng Lei, Meng Ao, Ge Shuguang, Chen Jie, Zhang Longzhen, Gong Ping

机构信息

School of Medical Imaging, Xuzhou Medical University, Xuzhou, China.

School of Information and Control Engineering, University of Mining and Technology, Xuzhou, China.

出版信息

Front Genet. 2023 Jan 4;13:1032768. doi: 10.3389/fgene.2022.1032768. eCollection 2022.

Abstract

Integrating multi-omics data for cancer subtype recognition is an important task in bioinformatics. Recently, deep learning has been applied to recognize the subtype of cancers. However, existing studies almost integrate the multi-omics data simply by concatenation as the single data and then learn a latent low-dimensional representation through a deep learning model, which did not consider the distribution differently of omics data. Moreover, these methods ignore the relationship of samples. To tackle these problems, we proposed SADLN: A self-attention based deep learning network of integrating multi-omics data for cancer subtype recognition. SADLN combined encoder, self-attention, decoder, and discriminator into a unified framework, which can not only integrate multi-omics data but also adaptively model the sample's relationship for learning an accurately latent low-dimensional representation. With the integrated representation learned from the network, SADLN used Gaussian Mixture Model to identify cancer subtypes. Experiments on ten cancer datasets of TCGA demonstrated the advantages of SADLN compared to ten methods. The Self-Attention Based Deep Learning Network (SADLN) is an effective method of integrating multi-omics data for cancer subtype recognition.

摘要

整合多组学数据用于癌症亚型识别是生物信息学中的一项重要任务。最近,深度学习已被应用于识别癌症亚型。然而,现有研究几乎只是简单地通过拼接将多组学数据整合为单一数据,然后通过深度学习模型学习潜在的低维表示,而没有考虑组学数据的不同分布。此外,这些方法忽略了样本之间的关系。为了解决这些问题,我们提出了SADLN:一种基于自注意力的整合多组学数据用于癌症亚型识别的深度学习网络。SADLN将编码器、自注意力、解码器和判别器组合成一个统一的框架,该框架不仅可以整合多组学数据,还可以自适应地对样本关系进行建模,以学习准确的潜在低维表示。利用从网络中学习到的整合表示,SADLN使用高斯混合模型来识别癌症亚型。在TCGA的十个癌症数据集上进行的实验证明了SADLN相对于十种方法的优势。基于自注意力的深度学习网络(SADLN)是一种整合多组学数据用于癌症亚型识别的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eeea/9846505/bf85d9a22dc0/fgene-13-1032768-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验