Suppr超能文献

基于超像素引导的特征恢复的低光照图像增强方法

Super-Pixel Guided Low-Light Images Enhancement with Features Restoration.

机构信息

School of Microelectronics and Communications Engineering, Chongqing University, Chongqing 400044, China.

出版信息

Sensors (Basel). 2022 May 11;22(10):3667. doi: 10.3390/s22103667.

Abstract

Dealing with low-light images is a challenging problem in the image processing field. A mature low-light enhancement technology will not only be conductive to human visual perception but also lay a solid foundation for the subsequent high-level tasks, such as target detection and image classification. In order to balance the visual effect of the image and the contribution of the subsequent task, this paper proposes utilizing shallow Convolutional Neural Networks (CNNs) as the priori image processing to restore the necessary image feature information, which is followed by super-pixel image segmentation to obtain image regions with similar colors and brightness and, finally, the Attentive Neural Processes (ANPs) network to find its local enhancement function on each super-pixel to further restore features and details. Through extensive experiments on the synthesized low-light image and the real low-light image, the experimental results of our algorithm reach 23.402, 0.920, and 2.2490 for Peak Signal to Noise Ratio (PSNR), Structural Similarity (SSIM), and Natural Image Quality Evaluator (NIQE), respectively. As demonstrated by the experiments on image Scale-Invariant Feature Transform (SIFT) feature detection and subsequent target detection, the results of our approach achieve excellent results in visual effect and image features.

摘要

处理低光照图像是图像处理领域的一个具有挑战性的问题。成熟的低光照增强技术不仅有助于人类视觉感知,而且为后续的高级任务(如目标检测和图像分类)奠定了坚实的基础。为了平衡图像的视觉效果和后续任务的贡献,本文提出利用浅层卷积神经网络(CNNs)作为先验图像处理来恢复必要的图像特征信息,然后进行超像素图像分割,以获得颜色和亮度相似的图像区域,最后使用注意力神经过程(ANPs)网络在每个超像素上找到其局部增强函数,以进一步恢复特征和细节。通过对合成低光照图像和真实低光照图像进行广泛的实验,我们算法的实验结果在峰值信噪比(PSNR)、结构相似性(SSIM)和自然图像质量评估器(NIQE)方面分别达到 23.402、0.920 和 2.2490。通过对图像尺度不变特征变换(SIFT)特征检测和随后的目标检测的实验表明,我们的方法在视觉效果和图像特征方面都取得了优异的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70a5/9147131/2ee1171c33a4/sensors-22-03667-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验