Suppr超能文献

基于对称序列卷积神经网络的超分辨率超声成像方案。

Super-Resolution Ultrasound Imaging Scheme Based on a Symmetric Series Convolutional Neural Network.

机构信息

Department of Information and Communication Engineering, Changwon National University, Changwon 51140, Korea.

出版信息

Sensors (Basel). 2022 Apr 16;22(8):3076. doi: 10.3390/s22083076.

Abstract

In this paper, we propose a symmetric series convolutional neural network (SS-CNN), which is a novel deep convolutional neural network (DCNN)-based super-resolution (SR) technique for ultrasound medical imaging. The proposed model comprises two parts: a feature extraction network (FEN) and an up-sampling layer. In the FEN, the low-resolution (LR) counterpart of the ultrasound image passes through a symmetric series of two different DCNNs. The low-level feature maps obtained from the subsequent layers of both DCNNs are concatenated in a feed forward manner, aiding in robust feature extraction to ensure high reconstruction quality. Subsequently, the final concatenated features serve as an input map to the latter 2D convolutional layers, where the textural information of the input image is connected via skip connections. The second part of the proposed model is a sub-pixel convolutional (SPC) layer, which up-samples the output of the FEN by multiplying it with a multi-dimensional kernel followed by a periodic shuffling operation to reconstruct a high-quality SR ultrasound image. We validate the performance of the SS-CNN with publicly available ultrasound image datasets. Experimental results show that the proposed model achieves a high-quality reconstruction of the ultrasound image over the conventional methods in terms of peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM), while providing compelling SR reconstruction time.

摘要

在本文中,我们提出了一种对称序列卷积神经网络(SS-CNN),这是一种新颖的基于深度卷积神经网络(DCNN)的超声医学成像超分辨率(SR)技术。所提出的模型包括两部分:特征提取网络(FEN)和上采样层。在 FEN 中,超声图像的低分辨率(LR)对应物通过两个不同的 DCNN 的对称序列传递。从两个 DCNN 的后续层获得的低层次特征图以前馈的方式进行连接,有助于稳健的特征提取,以确保高重建质量。随后,最终连接的特征作为输入映射到后 2D 卷积层,其中通过跳过连接连接输入图像的纹理信息。所提出模型的第二部分是子像素卷积(SPC)层,它通过将 FEN 的输出乘以多维核并进行周期性的洗牌操作来对其进行上采样,以重建高质量的 SR 超声图像。我们使用公开的超声图像数据集验证了 SS-CNN 的性能。实验结果表明,与传统方法相比,所提出的模型在峰值信噪比(PSNR)和结构相似性指数(SSIM)方面实现了超声图像的高质量重建,同时提供了有竞争力的 SR 重建时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4df3/9029455/f7b90a54f07e/sensors-22-03076-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验