Gevi Federica, Leo Patrick, Cassaro Alessia, Pacelli Claudia, de Vera Jean-Pierre Paul, Rabbow Elke, Timperio Anna Maria, Onofri Silvano
Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy.
Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Venice, Italy.
Front Microbiol. 2022 May 12;13:749396. doi: 10.3389/fmicb.2022.749396. eCollection 2022.
The identification of traces of life beyond Earth (e.g., Mars, icy moons) is a challenging task because terrestrial chemical-based molecules may be destroyed by the harsh conditions experienced on extraterrestrial planetary surfaces. For this reason, studying the effects on biomolecules of extremophilic microorganisms through astrobiological ground-based space simulation experiments is significant to support the interpretation of the data that will be gained and collected during the ongoing and future space exploration missions. Here, the stability of the biomolecules of the cryptoendolithic black fungus , grown on two Martian regolith analogues and on Antarctic sandstone, were analysed through a metabolomic approach, after its exposure to Science Verification Tests (SVTs) performed in the frame of the European Space Agency (ESA) Biology and Mars Experiment (BIOMEX) project. These tests are building a set of ground-based experiments performed before the space exposure aboard the International Space Station (ISS). The analysis aimed to investigate the effects of different mineral mixtures on fungal colonies and the stability of the biomolecules synthetised by the fungus under simulated Martian and space conditions. The identification of a specific group of molecules showing good stability after the treatments allow the creation of a molecular database that should support the analysis of future data sets that will be collected in the ongoing and next space exploration missions.
识别地球以外(如火星、冰卫星)的生命痕迹是一项具有挑战性的任务,因为基于地球化学的分子可能会被外星行星表面的恶劣条件破坏。因此,通过基于天体生物学的地面太空模拟实验研究极端微生物对生物分子的影响,对于支持解释在当前及未来太空探索任务中获得和收集的数据具有重要意义。在此,对生长在两种火星风化层模拟物和南极砂岩上的隐生内生黑真菌的生物分子稳定性进行了代谢组学分析,该真菌此前在欧洲航天局(ESA)生物学与火星实验(BIOMEX)项目框架内进行的科学验证试验(SVT)中接受了测试。这些测试正在构建一组在国际空间站(ISS)进行太空暴露之前开展的地面实验。该分析旨在研究不同矿物混合物对真菌菌落的影响以及真菌在模拟火星和太空条件下合成的生物分子的稳定性。识别出一组在处理后显示出良好稳定性的特定分子,有助于创建一个分子数据库,该数据库应能支持对在当前及下一次太空探索任务中收集的未来数据集的分析。