Shang Peng, Wang Yuling
College of Information Engineering, East China University of Technology, Nanchang 330000, P.R. China.
Jiangxi Engineering Technology Research Center of Nuclear Geoscience Data Science and system, East China University of Technology, Nanchang 330000, P.R. China.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2025 Apr 25;42(2):246-254. doi: 10.7507/1001-5515.202410042.
Aiming at the problems of low accuracy and large difference of segmentation boundary distance in anterior cruciate ligament (ACL) image segmentation of knee joint, this paper proposes an ACL image segmentation model by fusing dilated convolution and residual hybrid attention U-shaped network (DRH-UNet). The proposed model builds upon the U-shaped network (U-Net) by incorporating dilated convolutions to expand the receptive field, enabling a better understanding of the contextual relationships within the image. Additionally, a residual hybrid attention block is designed in the skip connections to enhance the expression of critical features in key regions and reduce the semantic gap, thereby improving the representation capability for the ACL area. This study constructs an enhanced annotated ACL dataset based on the publicly available Magnetic Resonance Imaging Network (MRNet) dataset. The proposed method is validated on this dataset, and the experimental results demonstrate that the DRH-UNet model achieves a Dice similarity coefficient (DSC) of (88.01±1.57)% and a Hausdorff distance (HD) of 5.16±0.85, outperforming other ACL segmentation methods. The proposed approach further enhances the segmentation accuracy of ACL, providing valuable assistance for subsequent clinical diagnosis by physicians.
针对膝关节前交叉韧带(ACL)图像分割中存在的精度低、分割边界距离差异大等问题,本文提出了一种融合扩张卷积和残差混合注意力U型网络(DRH-UNet)的ACL图像分割模型。所提出的模型基于U型网络(U-Net)构建,通过引入扩张卷积来扩大感受野,从而更好地理解图像中的上下文关系。此外,在跳跃连接中设计了一个残差混合注意力模块,以增强关键区域中关键特征的表达并减小语义差距,从而提高对ACL区域的表示能力。本研究基于公开可用的磁共振成像网络(MRNet)数据集构建了一个增强注释的ACL数据集。在所构建的数据集上对所提方法进行了验证,实验结果表明,DRH-UNet模型的骰子相似系数(DSC)达到了(88.01±1.57)%,豪斯多夫距离(HD)为5.16±0.85,优于其他ACL分割方法。所提方法进一步提高了ACL的分割精度,为医生后续的临床诊断提供了有价值的帮助。