State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, School of Life Sciences, Fujian Agriculture and Forestry Universitygrid.256111.0, Fuzhou, Fujian, China.
School of Life Science, Jiangsu Normal Universitygrid.411857.e, Xuzhou, Jiangsu, China.
Appl Environ Microbiol. 2022 Jun 28;88(12):e0024422. doi: 10.1128/aem.00244-22. Epub 2022 May 31.
Heterotrimeric G-proteins play crucial roles in growth, asexual development, and pathogenicity of fungi. The regulator of G-protein signaling (RGS) proteins function as negative regulators of the G proteins to control the activities of GTPase in Gα subunits. In this study, we functionally characterized the six RGS proteins (i.e., RgsA, RgsB, RgsC, RgsD, RgsE, and FlbA) in the pathogenic fungus Aspergillus flavus. All the aforementioned RGS proteins were also found to be functionally different in conidiation, aflatoxin (AF) biosynthesis, and pathogenicity in A. flavus. Apart from FlbA, all other RGS proteins play a negative role in regulating both the synthesis of cyclic AMP (cAMP) and the activation of protein kinase A (PKA). Additionally, we also found that although RgsA and RgsE play a negative role in regulating the FadA-cAMP/PKA pathway, they function distinctly in aflatoxin biosynthesis. Similarly, RgsC is important for aflatoxin biosynthesis by negatively regulating the GanA-cAMP/PKA pathway. PkaA, which is the cAMP-dependent protein kinase catalytic subunit, also showed crucial influences on A. flavus phenotypes. Overall, our results demonstrated that RGS proteins play multiple roles in the development, pathogenicity, and AF biosynthesis in A. flavus through the regulation of Gα subunits and cAMP-PKA signals. RGS proteins, as crucial regulators of the G protein signaling pathway, are widely distributed in fungi, while little is known about their roles in Aspergillus flavus development and aflatoxin. In this study, we identified six RGS proteins in A. flavus and revealed that these proteins have important functions in the regulation of conidia, sclerotia, and aflatoxin formation. Our findings provide evidence that the RGS proteins function upstream of cAMP-PKA signaling by interacting with the Gα subunits (GanA and FadA). This study provides valuable information for controlling the contamination of A. flavus and mycotoxins produced by this fungus in pre- and postharvest of agricultural crops.
三聚体 G 蛋白在真菌的生长、无性发育和致病性中发挥着关键作用。G 蛋白信号调节蛋白(RGS)作为 G 蛋白的负调节剂,控制 Gα 亚基中 GTP 酶的活性。在这项研究中,我们对致病真菌黄曲霉菌中的六种 RGS 蛋白(即 RgsA、RgsB、RgsC、RgsD、RgsE 和 FlbA)进行了功能表征。上述所有 RGS 蛋白在黄曲霉菌的分生孢子形成、黄曲霉毒素(AF)生物合成和致病性方面也表现出不同的功能。除了 FlbA 之外,所有其他 RGS 蛋白在调节环腺苷酸(cAMP)的合成和蛋白激酶 A(PKA)的激活方面都起着负调节作用。此外,我们还发现,尽管 RgsA 和 RgsE 在调节 FadA-cAMP/PKA 途径中起负调节作用,但它们在黄曲霉毒素生物合成中具有不同的功能。同样,RgsC 通过负调控 GanA-cAMP/PKA 途径对黄曲霉毒素生物合成很重要。PKaA,即 cAMP 依赖性蛋白激酶催化亚基,也对黄曲霉菌的表型有重要影响。总的来说,我们的研究结果表明,RGS 蛋白通过调节 Gα 亚基和 cAMP-PKA 信号通路,在黄曲霉菌的发育、致病性和 AF 生物合成中发挥多种作用。RGS 蛋白作为 G 蛋白信号通路的关键调节因子,广泛存在于真菌中,而它们在黄曲霉菌发育和黄曲霉毒素中的作用知之甚少。在这项研究中,我们在黄曲霉菌中鉴定了六种 RGS 蛋白,并揭示了这些蛋白在调节分生孢子、菌核和黄曲霉毒素形成方面的重要功能。我们的研究结果表明,RGS 蛋白通过与 Gα 亚基(GanA 和 FadA)相互作用,在上游作用于 cAMP-PKA 信号通路。这项研究为控制农业作物采前和采后黄曲霉菌及其产生的真菌毒素的污染提供了有价值的信息。