Suppr超能文献

G蛋白信号调节基因的系统发育及三种RGSs对不同萜类化合物的响应表达水平

Phylogeny of Regulators of G-Protein Signaling Genes in and Expression Levels of Three RGSs in Response to Different Terpenoids.

作者信息

Gan Tian, An Huanli, Tang Ming, Chen Hui

机构信息

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.

出版信息

Microorganisms. 2022 Aug 24;10(9):1698. doi: 10.3390/microorganisms10091698.

Abstract

is a bark beetle-vectored pine pathogen in the Chinese white pine beetle () epidemic in Northwest China. colonizes pines despite the trees' massive oleoresin terpenoid defenses. Regulators of G-protein signaling (RGS) proteins modulate heterotrimeric G-protein signaling negatively and play multiple roles in the growth, asexual development, and pathogenicity of fungi. In this study, we have identified three genes, and the phylogenetic analysis shows the highest homology with the regulators of G-protein signaling proteins sequence from and . The expression profiles of three RGSs in the mycelium of treated with six different terpenoids were detected, as well as their growth rates. Under six terpenoid treatments, the growth and reproduction in were significantly inhibited, and the growth inflection day was delayed from 8 days to 12-13 days. By analyzing the expression level of three genes of with different treatments, results indicate that plays a crucial role in controlling fungal growth, and both and are involved in overcoming the host chemical resistances and successful colonization.

摘要

是中国西北地区华山松大小蠹疫情中一种由小蠹虫传播的松树病原体。尽管松树具有大量的树脂萜类防御物质,[病原体名称]仍能在松树上定殖。G蛋白信号调节(RGS)蛋白负向调节异源三聚体G蛋白信号,并在真菌的生长、无性发育和致病性中发挥多种作用。在本研究中,我们鉴定了三个[RGS基因名称]基因,系统发育分析表明它们与[参考物种1]和[参考物种2]的G蛋白信号调节蛋白序列具有最高的同源性。检测了用六种不同萜类化合物处理的[病原体名称]菌丝体中三个RGS基因的表达谱及其生长速率。在六种萜类化合物处理下,[病原体名称]的生长和繁殖受到显著抑制,生长拐点从8天推迟到12 - 13天。通过分析不同处理下[病原体名称]三个[RGS基因名称]基因的表达水平,结果表明[RGS基因名称1]在控制真菌生长中起关键作用,[RGS基因名称2]和[RGS基因名称3]都参与克服宿主的化学抗性和成功定殖。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72e0/9506272/68c364713b26/microorganisms-10-01698-g001.jpg

相似文献

3
Molecular Mechanism of Overcoming Host Resistance by the Gene in .
Microorganisms. 2022 Feb 24;10(3):503. doi: 10.3390/microorganisms10030503.
4
The CYP51F1 Gene of Leptographium qinlingensis: Sequence Characteristic, Phylogeny and Transcript Levels.
Int J Mol Sci. 2015 May 26;16(6):12014-34. doi: 10.3390/ijms160612014.
5
The cytochrome P450s of Leptographium qinlingensis: Gene characteristics, phylogeny, and expression in response to terpenoids.
Fungal Biol. 2022 Jun-Jul;126(6-7):395-406. doi: 10.1016/j.funbio.2022.05.003. Epub 2022 May 10.
9
Gene discovery for the bark beetle-vectored fungal tree pathogen Grosmannia clavigera.
BMC Genomics. 2010 Oct 4;11:536. doi: 10.1186/1471-2164-11-536.

引用本文的文献

本文引用的文献

2
Molecular Mechanism of Overcoming Host Resistance by the Gene in .
Microorganisms. 2022 Feb 24;10(3):503. doi: 10.3390/microorganisms10030503.
4
Functional analysis of seven regulators of G protein signaling (RGSs) in the nematode-trapping fungus .
Virulence. 2021 Dec;12(1):1825-1840. doi: 10.1080/21505594.2021.1948667.
5
Ethanol-Enriched Substrate Facilitates Ambrosia Beetle Fungi, but Inhibits Their Pathogens and Fungal Symbionts of Bark Beetles.
Front Microbiol. 2021 Jan 13;11:590111. doi: 10.3389/fmicb.2020.590111. eCollection 2020.
6
Heterotrimeric G-protein signalers and RGSs in .
Pathogens. 2020 Oct 28;9(11):902. doi: 10.3390/pathogens9110902.
7
Transcriptomic and Functional Studies of the RGS Protein Rax1 in Aspergillus fumigatus.
Pathogens. 2019 Dec 31;9(1):36. doi: 10.3390/pathogens9010036.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验