Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia.
School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia.
Methods Mol Biol. 2022;2481:173-183. doi: 10.1007/978-1-0716-2237-7_11.
Growing genomic and phenotypic datasets require different groups around the world to collaborate and integrate these valuable resources to maximize their benefit and increase reference population sizes for genomic prediction and genome-wide association studies (GWAS). However, different studies use different genotyping techniques which requires a synchronizing step for the genotyped variants called "imputation" before combining them. Optimally, different GWAS datasets can be analysed within a meta-analysis, which recruits summary statistics instead of actual data. This chapter describes the general principles for genotypic imputation and meta-GWAS analysis with a description of study designs and command lines required for such analyses.
不断增长的基因组和表型数据集要求世界各地的不同团队协作并整合这些有价值的资源,以最大限度地发挥其效益,并增加基因组预测和全基因组关联研究 (GWAS) 的参考群体规模。然而,不同的研究使用不同的基因分型技术,这需要对经过基因分型的变异进行一个同步化步骤,称为“基因型推断”,然后再将它们组合起来。最理想的情况下,可以在荟萃分析中分析不同的 GWAS 数据集,该分析招募汇总统计信息而不是实际数据。本章描述了基因型推断和元 GWAS 分析的一般原则,并描述了此类分析所需的研究设计和命令行。