Suppr超能文献

全基因组关联研究的荟萃分析揭示了在广泛的正常和热胁迫环境中控制农艺和品质性状的常见位点。

Meta-analysis of genome-wide association studies reveal common loci controlling agronomic and quality traits in a wide range of normal and heat stressed environments.

机构信息

Agriculture Victoria, Centre for AgriBioscience, AgriBio, Bundoora, VIC, Australia.

School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Narrabri, NSW, Australia.

出版信息

Theor Appl Genet. 2021 Jul;134(7):2113-2127. doi: 10.1007/s00122-021-03809-y. Epub 2021 Mar 25.

Abstract

Several stable QTL were detected using metaGWAS analysis for different agronomic and quality traits under 26 normal and heat stressed environments. Heat stress, exacerbated by global warming, has a negative influence on wheat production worldwide and climate resilient cultivars can help mitigate these impacts. Selection decisions should therefore depend on multi-environment experiments representing a range of temperatures at critical stages of development. Here, we applied a meta-genome wide association analysis (metaGWAS) approach to detect stable QTL with significant effects across multiple environments. The metaGWAS was applied to 11 traits scored in 26 trials that were sown at optimal or late times of sowing (TOS1 and TOS2, respectively) at five locations. A total of 2571 unique wheat genotypes (13,959 genotypes across all environments) were included and the analysis conducted on TOS1, TOS2 and both times of sowing combined (TOS1&2). The germplasm was genotyped using a 90 k Infinium chip and imputed to exome sequence level, resulting in 341,195 single nucleotide polymorphisms (SNPs). The average accuracy across all imputed SNPs was high (92.4%). The three metaGWAS analyses revealed 107 QTL for the 11 traits, of which 16 were detected in all three analyses and 23 were detected in TOS1&2 only. The remaining QTL were detected in either TOS1 or TOS2 with or without TOS1&2, reflecting the complex interactions between the environments and the detected QTL. Eight QTL were associated with grain yield and seven with multiple traits. The identified QTL provide an important resource for gene enrichment and fine mapping to further understand the mechanisms of gene × environment interaction under both heat stressed and unstressed conditions.

摘要

使用元 GWAS 分析在 26 个正常和热胁迫环境下检测到几个稳定的 QTL,用于不同的农艺和品质性状。全球变暖加剧了热胁迫,对全球小麦生产产生负面影响,具有气候弹性的品种可以帮助减轻这些影响。因此,选择决策应取决于代表发育关键阶段多种温度的多环境实验。在这里,我们应用元基因组关联分析(metaGWAS)方法来检测跨多个环境具有显著影响的稳定 QTL。metaGWAS 应用于在五个地点以最佳或较晚的播种时间(分别为 TOS1 和 TOS2)播种的 26 个试验中评分的 11 个性状。共包括 2571 个独特的小麦基因型(所有环境中共有 13959 个基因型),并在 TOS1、TOS2 和两个播种时间(TOS1&2)上进行分析。使用 90k Infinium 芯片对种质进行基因型分析,并外推到外显子序列水平,产生 341195 个单核苷酸多态性(SNP)。所有推断 SNP 的平均准确性都很高(92.4%)。三个 metaGWAS 分析揭示了 11 个性状的 107 个 QTL,其中 16 个在三个分析中均被检测到,23 个仅在 TOS1&2 中被检测到。其余 QTL仅在 TOS1 或 TOS2 中被检测到,或者在 TOS1&2 中被检测到,反映了环境和检测到的 QTL 之间的复杂相互作用。有 8 个 QTL 与粒重有关,7 个与多个性状有关。鉴定出的 QTL 为基因富集和精细作图提供了重要资源,以进一步了解在热胁迫和非胁迫条件下基因与环境相互作用的机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验