Jones Michael A, Vallury Harish J, Hill Charles D, Hollenberg Lloyd C L
School of Physics, University of Melbourne, Parkville, 3010, Australia.
School of Mathematics and Statistics, University of Melbourne, Parkville, 3010, Australia.
Sci Rep. 2022 May 28;12(1):8985. doi: 10.1038/s41598-022-12324-z.
Quantum computers hold promise to circumvent the limitations of conventional computing for difficult molecular problems. However, the accumulation of quantum logic errors on real devices represents a major challenge, particularly in the pursuit of chemical accuracy requiring the inclusion of electronic correlation effects. In this work we implement the quantum computed moments (QCM) approach for hydrogen chain molecular systems up to H[Formula: see text]. On a superconducting quantum processor, Hamiltonian moments, [Formula: see text] are computed with respect to the Hartree-Fock state, which are then employed in Lanczos expansion theory to determine an estimate for the ground-state energy which incorporates electronic correlations and manifestly improves on the direct energy measurement. Post-processing purification of the raw QCM data takes the estimate below the Hartree-Fock energy to within 99.9% of the exact electronic ground-state energy for the largest system studied, H[Formula: see text]. Calculated dissociation curves indicate precision at about 10mH for this system and as low as 0.1mH for molecular hydrogen, H[Formula: see text], over a range of bond lengths. In the context of stringent precision requirements for chemical problems, these results provide strong evidence for the error suppression capability of the QCM method, particularly when coupled with post-processing error mitigation. While calculations based on the Hartree-Fock state are tractable to classical computation, these results represent a first step towards implementing the QCM method in a quantum chemical trial circuit. Greater emphasis on more efficient representations of the Hamiltonian and classical preprocessing steps may enable the solution of larger systems on near-term quantum processors.
量子计算机有望克服传统计算在处理复杂分子问题时的局限性。然而,实际设备上量子逻辑错误的积累是一个重大挑战,特别是在追求需要考虑电子相关效应的化学精度时。在这项工作中,我们对多达H[公式:见原文]的氢链分子系统实施了量子计算矩(QCM)方法。在超导量子处理器上,相对于哈特里 - 福克态计算哈密顿矩[公式:见原文],然后将其用于兰索斯展开理论,以确定包含电子相关性的基态能量估计值,这明显改进了直接能量测量。对原始QCM数据进行后处理净化后,对于所研究的最大系统H[公式:见原文],估计值低于哈特里 - 福克能量,达到精确电子基态能量的99.9%以内。计算得到的解离曲线表明,该系统在约10mH的精度下,对于分子氢H[公式:见原文],在一系列键长范围内精度低至0.1mH。在对化学问题有严格精度要求的背景下,这些结果为QCM方法的误差抑制能力提供了有力证据,特别是与后处理误差缓解相结合时。虽然基于哈特里 - 福克态的计算对于经典计算来说是易于处理的,但这些结果代表了在量子化学试验电路中实现QCM方法的第一步。更加注重哈密顿量更有效的表示和经典预处理步骤,可能使在近期量子处理器上解决更大的系统成为可能。