Rodrigues Milena Lima, da Luz Tatiane Priscila Santos Rodrigues, Pereira Caroline Louise Diniz, Batista Andrea Dória, Domingues Ana Lúcia Coutinho, Silva Ricardo Oliveira, Lopes Edmundo Pessoa
Programa de Pós-Graduação em Medicina Tropical, Centro de Ciências Médicas, Universidade Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil.
Programa de Pós-Graduação em Química, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife 50670-740, Pernambuco, Brazil.
World J Hepatol. 2022 Apr 27;14(4):719-728. doi: 10.4254/wjh.v14.i4.719.
The evaluation of periportal fibrosis (PPF) is essential for a prognostic assessment of patients with . The WHO Niamey Protocol defines patterns of fibrosis from abdominal ultrasonography, H-nuclear magnetic resonance (NMR)-based metabonomics has been employed to assess liver fibrosis in some diseases.
To build H-NMR-based metabonomics models (MM) to discriminate mild from significant periportal PPF and identify differences in the metabolite profiles.
A prospective cross-sectional study was performed on schistosomiasis patients at a University Hospital in Northeastern Brazil. We evaluated 41 serum samples from 10 patients with mild PPF (C Niamey pattern) and 31 patients with significant PPF (D/E/F Niamey patterns). MM were built using partial least squares-discriminant analysis (PLS-DA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA) formalisms.
PLS-DA and OPLS-DA resulted in discrimination between mild and significant PPF groups with R2 and Q2 values of 0.80 and 0.38 and 0.72 and 0.42 for each model, respectively. The OPLS-DA model presented accuracy, sensitivity, and specificity values of 92.7%, 90.3%, and 100% to discriminate significant PPF. The metabolites identified as responsible by discrimination were: N-acetylglucosamines, alanine, glycolaldehyde, carbohydrates, and valine.
MMs discriminated mild from significant PPF patterns in patients with through identification of differences in serum metabolites profiles.
肝门周围纤维化(PPF)的评估对于[具体疾病]患者的预后评估至关重要。世界卫生组织尼亚美协议定义了腹部超声检查的纤维化模式,基于氢核磁共振(NMR)的代谢组学已被用于评估某些疾病中的肝纤维化。
构建基于氢核磁共振的代谢组学模型(MM)以区分轻度与重度肝门周围PPF,并识别代谢物谱的差异。
在巴西东北部一家大学医院对血吸虫病患者进行了一项前瞻性横断面研究。我们评估了41份血清样本,其中10例为轻度PPF患者(尼亚美C型),31例为重度PPF患者(尼亚美D/E/F型)。使用偏最小二乘判别分析(PLS-DA)和正交投影到潜在结构判别分析(OPLS-DA)方法构建MM。
PLS-DA和OPLS-DA能够区分轻度和重度PPF组,每个模型的R2和Q2值分别为0.80和0.38以及0.72和0.42。OPLS-DA模型在区分重度PPF时的准确率、灵敏度和特异性值分别为92.7%、90.3%和100%。通过判别确定的相关代谢物为:N-乙酰葡糖胺、丙氨酸、乙醇醛、碳水化合物和缬氨酸。
MM通过识别血清代谢物谱的差异,区分了[具体疾病]患者的轻度与重度PPF模式。