Obi Chibuike David, Bhuiyan Tawhid, Dailey Harry A, Medlock Amy E
Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States.
Department of Microbiology, University of Georgia, Athens, GA, United States.
Front Cell Dev Biol. 2022 May 12;10:894591. doi: 10.3389/fcell.2022.894591. eCollection 2022.
Porphyrin and iron are ubiquitous and essential for sustaining life in virtually all living organisms. Unlike iron, which exists in many forms, porphyrin macrocycles are mostly functional as metal complexes. The iron-containing porphyrin, heme, serves as a prosthetic group in a wide array of metabolic pathways; including respiratory cytochromes, hemoglobin, cytochrome P450s, catalases, and other hemoproteins. Despite playing crucial roles in many biological processes, heme, iron, and porphyrin intermediates are potentially cytotoxic. Thus, the intersection of porphyrin and iron metabolism at heme synthesis, and intracellular trafficking of heme and its porphyrin precursors are tightly regulated processes. In this review, we discuss recent advances in understanding the physiological dynamics of eukaryotic ferrochelatase, a mitochondrially localized metalloenzyme. Ferrochelatase catalyzes the terminal step of heme biosynthesis, the insertion of ferrous iron into protoporphyrin IX to produce heme. In most eukaryotes, except plants, ferrochelatase is localized to the mitochondrial matrix, where substrates are delivered and heme is synthesized for trafficking to multiple cellular locales. Herein, we delve into the structural and functional features of ferrochelatase, as well as its metabolic regulation in the mitochondria. We discuss the regulation of ferrochelatase via post-translational modifications, transportation of substrates and product across the mitochondrial membrane, protein-protein interactions, inhibition by small-molecule inhibitors, and ferrochelatase in protozoal parasites. Overall, this review presents insight on mitochondrial heme homeostasis from the perspective of ferrochelatase.
卟啉和铁广泛存在,对于几乎所有生物体维持生命至关重要。与存在多种形式的铁不同,卟啉大环大多作为金属配合物发挥功能。含铁卟啉,即血红素,在众多代谢途径中作为辅基发挥作用;包括呼吸细胞色素、血红蛋白、细胞色素P450、过氧化氢酶及其他血红素蛋白。尽管血红素、铁和卟啉中间体在许多生物过程中发挥关键作用,但它们具有潜在的细胞毒性。因此,血红素合成过程中卟啉和铁代谢的交叉,以及血红素及其卟啉前体的细胞内运输是受到严格调控的过程。在本综述中,我们讨论了在理解真核生物铁螯合酶(一种定位于线粒体的金属酶)的生理动态方面的最新进展。铁螯合酶催化血红素生物合成的最后一步,即将亚铁插入原卟啉IX中以产生血红素。在大多数真核生物中,除了植物,铁螯合酶定位于线粒体基质,底物在那里被输送,血红素在那里合成以便运输到多个细胞位点。在此,我们深入探讨铁螯合酶的结构和功能特征,以及其在线粒体中的代谢调控。我们讨论了通过翻译后修饰对铁螯合酶的调控、底物和产物跨线粒体膜的运输、蛋白质 - 蛋白质相互作用、小分子抑制剂的抑制作用以及原生动物寄生虫中的铁螯合酶。总体而言,本综述从铁螯合酶的角度对线粒体血红素稳态提供了见解。