Suppr超能文献

基于脂肪生物信息学和机器学习的肥胖相关代谢标志物的鉴定。

Identification of metabolism related biomarkers in obesity based on adipose bioinformatics and machine learning.

机构信息

Department of Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, No. 1073 South Erhuan Road, Tangxiang Street, Dazu District, Chongqing, 402360, China.

Department of Endocrinology, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, 402360, China.

出版信息

J Transl Med. 2024 Oct 31;22(1):986. doi: 10.1186/s12967-024-05615-8.

Abstract

BACKGROUND

Obesity has emerged as a growing global public health concern over recent decades. Obesity prevalence exhibits substantial global variation, ranging from less than 5% in regions like China, Japan, and Africa to rates exceeding 75% in urban areas of Samoa.

AIM

To examine the involvement of metabolism-related genes.

METHODS

Gene expression datasets GSE110729 and GSE205668 were accessed from the GEO database. DEGs between obese and lean groups were identified through DESeq2. Metabolism-related genes and pathways were detected using enrichment analysis, WGCNA, Random Forest, and XGBoost. The identified signature genes were validated by real-time quantitative PCR (qRT-PCR) in mouse models.

RESULTS

A total of 389 genes exhibiting differential expression were discovered, showing significant enrichment in metabolic pathways, particularly in the propanoate metabolism pathway. The orangered4 module, which exhibited the highest correlation with propanoate metabolism, was identified using Weighted Correlation Network Analysis (WGCNA). By integrating the DEGs, WGCNA results, and machine learning methods, the identification of two metabolism-related genes, Storkhead Box 1 (STOX1), NACHT and WD repeat domain-containing protein 2(NWD2) was achieved. These signature genes successfully distinguished between obese and lean individuals. qRT-PCR analysis confirmed the downregulation of STOX1 and NWD2 in mouse models of obesity.

CONCLUSION

This study has analyzed the available GEO dataset in order to identify novel factors associated with obesity metabolism and found that STOX1 and NWD2 may serve as diagnostic biomarkers.

摘要

背景

肥胖症是近几十年来出现的一个日益严重的全球公共卫生问题。肥胖症的患病率在全球范围内存在显著差异,从中国、日本和非洲等地区的患病率不足 5%到萨摩亚城市地区的患病率超过 75%不等。

目的

研究与代谢相关的基因的参与情况。

方法

从 GEO 数据库中获取基因表达数据集 GSE110729 和 GSE205668。通过 DESeq2 识别肥胖组和瘦体组之间的差异表达基因。使用富集分析、WGCNA、随机森林和 XGBoost 检测与代谢相关的基因和途径。通过实时定量 PCR (qRT-PCR)在小鼠模型中验证鉴定的特征基因。

结果

共发现 389 个差异表达基因,这些基因在代谢途径中表现出显著的富集,特别是在丙酸代谢途径中。通过加权相关网络分析 (WGCNA) 鉴定出与丙酸代谢相关性最高的 orangered4 模块。通过整合差异表达基因、WGCNA 结果和机器学习方法,鉴定出两个与代谢相关的基因,即 STOX1 和 NACHT 和 WD 重复域蛋白 2 (NWD2)。这些特征基因成功地区分了肥胖和瘦体个体。qRT-PCR 分析证实 STOX1 和 NWD2 在肥胖小鼠模型中下调。

结论

本研究分析了现有的 GEO 数据集,以鉴定与肥胖代谢相关的新因子,并发现 STOX1 和 NWD2 可能作为诊断生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd58/11526509/08a0edef88fe/12967_2024_5615_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验