College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, Yangtze University, Jingzhou 434025, Hubei, China; Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou 434025, Hubei, China.
College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
Food Res Int. 2022 Jun;156:111135. doi: 10.1016/j.foodres.2022.111135. Epub 2022 Mar 15.
Selenium is an essential trace element for human and animal health, and an appropriate amount of Se can promote the growth and development of plants. Cabbage is a popular cruciferous vegetable with a good ability to accumulate Se, and Se-enriched cabbage can be used as an important Se source for humans. However, the effects of Se-enriched cultivation and the Se accumulation mechanism in cabbage are still unclear. In this study, the effects of different concentrations (0, 0.1, 0.2, 0.4, 0.8, and 1.6 mmol/L) of selenate on cabbage growth and quality were explored. A low concentration of selenate (0.1 mmol/L) promoted growth and nutritional quality. The contents of total Se, S, selenocystine, and selenomethionine significantly increased following selenate application. Important secondary metabolites, namely glucosinolates, phenolic acids, and flavonoids, participate in the response to selenate in cabbage. Comparative transcriptome and metabolomics analysis revealed that SULTR2.2, SULTR3.1, APS, APK2, HMT, MMT, and NTR2 played important roles in Se absorption and conversion. Additionally, the SUR1, UGT74B1, and ST5b genes and cytochrome P450 family genes CYP83A1, CYP79A2, and CYP79F1 may be the crucial genes in the glucosinolates biosynthesis and regulation pathway. The PAL, 4CL, CAD, CHS3, FLS, and CYP73A5 genes were involved in flavonoid and phenolic acid accumulation under selenate treatment. These results reveal the internal relationships in the regulatory network of Se metabolism and secondary metabolite biosynthesis in cabbage and help further the understanding of the physiological and molecular mechanism of how Se biofortification affects cabbage quality, thereby providing genetic resources and a technical basis for the breeding and cultivation of Se-enriched cabbage with excellent nutritional quality.
硒是人体和动物健康所必需的微量元素,适量的硒可以促进植物的生长和发育。 白菜是一种受欢迎的十字花科蔬菜,具有良好的富集硒的能力,富硒白菜可以作为人类重要的硒源。 然而,富硒栽培的效果和白菜中硒的积累机制仍不清楚。 在这项研究中,研究了不同浓度(0、0.1、0.2、0.4、0.8 和 1.6 mmol/L)的硒酸盐对白菜生长和品质的影响。 低浓度的硒酸盐(0.1 mmol/L)促进了生长和营养品质。 硒酸盐处理后,总硒、硫、硒代半胱氨酸和硒代蛋氨酸的含量显著增加。 重要的次生代谢物,即硫代葡萄糖苷、酚酸和类黄酮,参与了白菜对硒酸盐的响应。 比较转录组和代谢组学分析表明,SULTR2.2、SULTR3.1、APS、APK2、HMT、MMT 和 NTR2 在硒吸收和转化中发挥重要作用。 此外,SUR1、UGT74B1 和 ST5b 基因和细胞色素 P450 家族基因 CYP83A1、CYP79A2 和 CYP79F1 可能是硫代葡萄糖苷生物合成和调控途径中的关键基因。 PAL、4CL、CAD、CHS3、FLS 和 CYP73A5 基因参与了富硒处理下类黄酮和酚酸的积累。 这些结果揭示了白菜中硒代谢和次生代谢物生物合成调控网络的内在关系,有助于进一步了解硒生物强化如何影响白菜品质的生理和分子机制,从而为富硒白菜的遗传资源和优异营养品质的培育和栽培提供技术基础。