Suppr超能文献

脑电图α波与θ波以及θ波与α波频段比率作为心理负荷指标的评估

An Evaluation of the EEG Alpha-to-Theta and Theta-to-Alpha Band Ratios as Indexes of Mental Workload.

作者信息

Raufi Bujar, Longo Luca

机构信息

Artificial Intelligence and Cognitive Load Lab, Applied Intelligence Research Centre, School of Computer Science, Technological University Dublin, Dublin, Ireland.

出版信息

Front Neuroinform. 2022 May 16;16:861967. doi: 10.3389/fninf.2022.861967. eCollection 2022.

Abstract

Many research works indicate that EEG bands, specifically the alpha and theta bands, have been potentially helpful cognitive load indicators. However, minimal research exists to validate this claim. This study aims to assess and analyze the impact of the alpha-to-theta and the theta-to-alpha band ratios on supporting the creation of models capable of discriminating self-reported perceptions of mental workload. A dataset of raw EEG data was utilized in which 48 subjects performed a resting activity and an induced task demanding exercise in the form of a multitasking SIMKAP test. Band ratios were devised from frontal and parietal electrode clusters. Building and model testing was done with high-level independent features from the frequency and temporal domains extracted from the computed ratios over time. Target features for model training were extracted from the subjective ratings collected after resting and task demand activities. Models were built by employing Logistic Regression, Support Vector Machines and Decision Trees and were evaluated with performance measures including accuracy, recall, precision and f1-score. The results indicate high classification accuracy of those models trained with the high-level features extracted from the alpha-to-theta ratios and theta-to-alpha ratios. Preliminary results also show that models trained with logistic regression and support vector machines can accurately classify self-reported perceptions of mental workload. This research contributes to the body of knowledge by demonstrating the richness of the information in the temporal, spectral and statistical domains extracted from the alpha-to-theta and theta-to-alpha EEG band ratios for the discrimination of self-reported perceptions of mental workload.

摘要

许多研究工作表明,脑电图波段,特别是阿尔法波段和西塔波段,有可能成为有用的认知负荷指标。然而,为验证这一说法开展的研究极少。本研究旨在评估和分析阿尔法与西塔波段比率以及西塔与阿尔法波段比率对支持创建能够区分自我报告的心理负荷感知的模型的影响。研究使用了一个原始脑电图数据集,其中48名受试者进行了静息活动以及一项以多任务SIMKAP测试形式进行的诱发任务(要求进行运动)。波段比率是根据额叶和顶叶电极簇设计的。通过从随时间计算出的比率中提取的频率和时间域的高级独立特征进行模型构建和测试。模型训练的目标特征是从静息和任务需求活动后收集的主观评分中提取的。通过采用逻辑回归、支持向量机和决策树构建模型,并使用包括准确率、召回率、精确率和F1分数在内的性能指标进行评估。结果表明,用从阿尔法与西塔比率以及西塔与阿尔法比率中提取的高级特征训练的那些模型具有较高的分类准确率。初步结果还表明,用逻辑回归和支持向量机训练的模型能够准确地对自我报告的心理负荷感知进行分类。本研究通过证明从阿尔法与西塔和西塔与阿尔法脑电图波段比率中提取的时间、频谱和统计域信息的丰富性,为知识体系做出了贡献,这些信息可用于区分自我报告的心理负荷感知。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b9e/9149374/9777c7cd51ae/fninf-16-861967-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验