Suppr超能文献

用于在暴饮暴食遗传学倡议的数字表型研究中表征饮食失调行为高风险状态的被动传感器数据:一项观察性研究方案

Passive Sensor Data for Characterizing States of Increased Risk for Eating Disorder Behaviors in the Digital Phenotyping Arm of the Binge Eating Genetics Initiative: Protocol for an Observational Study.

作者信息

Kilshaw Robyn E, Adamo Colin, Butner Jonathan E, Deboeck Pascal R, Shi Qinxin, Bulik Cynthia M, Flatt Rachael E, Thornton Laura M, Argue Stuart, Tregarthen Jenna, Baucom Brian R W

机构信息

Department of Psychology, University of Utah, Salt Lake City, UT, United States.

Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.

出版信息

JMIR Res Protoc. 2022 Jun 2;11(6):e38294. doi: 10.2196/38294.

Abstract

BACKGROUND

Data that can be easily, efficiently, and safely collected via cell phones and other digital devices have great potential for clinical application. Here, we focus on how these data could be used to refine and augment intervention strategies for binge eating disorder (BED) and bulimia nervosa (BN), conditions that lack highly efficacious, enduring, and accessible treatments. These data are easy to collect digitally but are highly complex and present unique methodological challenges that invite innovative solutions.

OBJECTIVE

We describe the digital phenotyping component of the Binge Eating Genetics Initiative, which uses personal digital device data to capture dynamic patterns of risk for binge and purge episodes. Characteristic data signatures will ultimately be used to develop personalized models of eating disorder pathologies and just-in-time interventions to reduce risk for related behaviors. Here, we focus on the methods used to prepare the data for analysis and discuss how these approaches can be generalized beyond the current application.

METHODS

The University of North Carolina Biomedical Institutional Review Board approved all study procedures. Participants who met diagnostic criteria for BED or BN provided real time assessments of eating behaviors and feelings through the Recovery Record app delivered on iPhones and the Apple Watches. Continuous passive measures of physiological activation (heart rate) and physical activity (step count) were collected from Apple Watches over 30 days. Data were cleaned to account for user and device recording errors, including duplicate entries and unreliable heart rate and step values. Across participants, the proportion of data points removed during cleaning ranged from <0.1% to 2.4%, depending on the data source. To prepare the data for multivariate time series analysis, we used a novel data handling approach to address variable measurement frequency across data sources and devices. This involved mapping heart rate, step count, feeling ratings, and eating disorder behaviors onto simultaneous minute-level time series that will enable the characterization of individual- and group-level regulatory dynamics preceding and following binge and purge episodes.

RESULTS

Data collection and cleaning are complete. Between August 2017 and May 2021, 1019 participants provided an average of 25 days of data yielding 3,419,937 heart rate values, 1,635,993 step counts, 8274 binge or purge events, and 85,200 feeling observations. Analysis will begin in spring 2022.

CONCLUSIONS

We provide a detailed description of the methods used to collect, clean, and prepare personal digital device data from one component of a large, longitudinal eating disorder study. The results will identify digital signatures of increased risk for binge and purge events, which may ultimately be used to create digital interventions for BED and BN. Our goal is to contribute to increased transparency in the handling and analysis of personal digital device data.

TRIAL REGISTRATION

ClinicalTrials.gov NCT04162574; https://clinicaltrials.gov/ct2/show/NCT04162574.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/38294.

摘要

背景

通过手机和其他数字设备能够轻松、高效且安全地收集的数据,在临床应用中具有巨大潜力。在此,我们聚焦于如何利用这些数据来优化和增强针对暴饮暴食症(BED)和神经性贪食症(BN)的干预策略,这两种病症缺乏高效、持久且易于获取的治疗方法。这些数据易于通过数字方式收集,但高度复杂且呈现出独特的方法学挑战,需要创新的解决方案。

目的

我们描述了暴饮暴食遗传学倡议中的数字表型分析部分,该部分利用个人数字设备数据来捕捉暴饮暴食和清除行为发作的动态风险模式。特征数据特征最终将用于开发饮食失调病理的个性化模型以及即时干预措施,以降低相关行为的风险。在此,我们聚焦于为分析准备数据所使用的方法,并讨论这些方法如何能在当前应用之外进行推广。

方法

北卡罗来纳大学的生物医学机构审查委员会批准了所有研究程序。符合BED或BN诊断标准的参与者通过安装在iPhone和Apple Watch上的Recovery Record应用程序提供饮食行为和感受的实时评估。在30天内从Apple Watch收集生理激活(心率)和身体活动(步数)的连续被动测量数据。对数据进行清理以解决用户和设备记录错误,包括重复条目以及不可靠的心率和步数数值。在所有参与者中,清理过程中去除的数据点比例根据数据源不同,从<0.1%到2.4%不等。为了为多变量时间序列分析准备数据,我们采用了一种新颖的数据处理方法来解决跨数据源和设备的变量测量频率问题。这涉及将心率、步数、感受评分和饮食失调行为映射到同步的分钟级时间序列上,这将有助于刻画暴饮暴食和清除行为发作之前和之后的个体和群体层面的调节动态。

结果

数据收集和清理工作已完成。在2017年8月至2021年5月期间,1019名参与者平均提供了25天的数据,产生了3419937个心率值、1635993个步数记录、8274次暴饮暴食或清除事件以及85200次感受观察。分析将于2022年春季开始。

结论

我们详细描述了从一项大型纵向饮食失调研究的一个组成部分中收集、清理和准备个人数字设备数据所使用的方法。结果将识别出暴饮暴食和清除事件风险增加的数字特征,这最终可能用于为BED和BN创建数字干预措施。我们的目标是提高个人数字设备数据处理和分析的透明度。

试验注册

ClinicalTrials.gov NCT04162574;https://clinicaltrials.gov/ct2/show/NCT04162574。

国际注册报告标识符(IRRID):DERR1-10.2196/38294。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b36/9204566/fb12455d035d/resprot_v11i6e38294_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验