Shi Qinxin, Thornton Laura M, Kilshaw Robyn, Flatt Rachael E, Butner Jonathan E, Adamo Colin, Deboeck Pascal R, Baucom Brian R W, Tregarthen Jenna, Argue Stuart, Bulik Cynthia M
Department of Psychology, University of Utah.
Department of Psychiatry and Behavioral Sciences, Children's National Hospital, Washington, DC.
Clin Psychol Sci. 2025 May;13(3):558-581. doi: 10.1177/21677026241280728. Epub 2024 Dec 9.
In this study, we investigate using passive data, specifically, heart rate and actigraphy, for individuals with binge-type eating disorders such as bulimia nervosa (BN) and binge-eating disorder (BED). By applying dynamical-system theory and incorporating advancements in technology-based health care, we explored the relationship between passive data patterns as potential indicators of binge-eating episodes. Over 30 days, 1,019 participants with BN or BED symptoms used the Recovery Record app on iPhone and Apple Watches for real-time eating-behavior logging. Apple Watches simultaneously recorded heart rate and actigraphy. Results show no marked difference in heart and step averages 2 hr before a binge versus a control period. However, significant momentum and stability differences emerged when examining the changing dynamics leading up to a binge event. These findings suggest that the stability of step, rather than their average value, may serve as a detectable indicator of approaching binge events.
在本研究中,我们调查了如何使用被动数据,具体而言,即心率和活动记录仪数据,来研究患有暴食型饮食失调症的个体,如神经性贪食症(BN)和暴食症(BED)。通过应用动力系统理论并结合基于技术的医疗保健方面的进展,我们探索了被动数据模式作为暴食发作潜在指标之间的关系。在30天的时间里,1019名有BN或BED症状的参与者使用iPhone和Apple Watch上的Recovery Record应用程序进行实时饮食行为记录。Apple Watch同时记录心率和活动记录仪数据。结果显示,在暴食前2小时与对照期相比,心率和步数平均值没有显著差异。然而,在检查导致暴食事件的变化动态时,出现了显著的动量和稳定性差异。这些发现表明,步数的稳定性,而非其平均值,可能作为即将发生暴食事件的可检测指标。