IEEE J Biomed Health Inform. 2022 Sep;26(9):4462-4473. doi: 10.1109/JBHI.2022.3179630. Epub 2022 Sep 9.
Gesture recognition for myoelectric prosthesis control utilizing sparse multichannel surface Electromyography (sEMG) is a challenging task, and from a Muscle-Computer Interface (MCI) standpoint, the performance is still far from optimal. However, the design of a well-performed sEMG recognition system depends on the flexibility of the input-output function and the dataset's quality. To improve the performance of MCI, we proposed a novel gesture recognition framework that (i) Enrich the spectral information of the sparse sEMG signals by constructing a fused map image (denoted as sEMG-Map) that integrates a multiresolution decomposition (by means of orthogonal wavelets) through the raw signals then rely upon the Convolutional Neural Network (CNN) capacity to exploit the composite hierarchies in the constructed sEMG-Map input. (ii) Deals with the label noise by proposing a data-centric method (denoted as ALR-CNN) that synchronously refines the falsely labeled samples and optimizes the CNN model based on two basic assumptions. First, the deep model accuracy improves as the training progress. Second, a set of successive learnable max-activated outputs of a well-performed deep model is a reliable estimator for motion detection in the muscle activation pattern. Our proposed framework is evaluated on three large-scale public databases. The average classification accuracy is 95.50%, 95.85%, and 85.58% for NinaPro DB2, NinaPro DB7, and NinaPro DB3, respectively. The experimental results verify the effectuality of the proposed method and show high accuracy.
基于稀疏多通道表面肌电信号(sEMG)的肌电假体控制中的手势识别是一项具有挑战性的任务,从肌电接口(MCI)的角度来看,其性能仍远非最佳。然而,一个性能良好的 sEMG 识别系统的设计取决于输入-输出函数的灵活性和数据集的质量。为了提高 MCI 的性能,我们提出了一种新的手势识别框架,该框架 (i) 通过构建融合图图像(表示为 sEMG-Map)来丰富稀疏 sEMG 信号的频谱信息,该图像通过原始信号集成了多分辨率分解(通过正交小波),然后依赖卷积神经网络(CNN)的能力来利用构建的 sEMG-Map 输入中的组合层次结构。(ii) 通过提出一种数据中心方法(表示为 ALR-CNN)来处理标签噪声,该方法基于两个基本假设同步细化错误标记的样本并优化 CNN 模型。首先,随着训练的进行,深度模型的准确性会提高。其次,一个性能良好的深度模型的一系列可学习的最大激活输出是肌肉激活模式中运动检测的可靠估计器。我们的框架在三个大型公共数据库上进行了评估。对于 NinaPro DB2、NinaPro DB7 和 NinaPro DB3,平均分类准确率分别为 95.50%、95.85%和 85.58%。实验结果验证了所提出方法的有效性,并显示了较高的准确性。