Department of Computer Engineer, Universidad Americana, Asunción, Paraguay.
Division of Computer Science, Universidad Pablo de Olavide, Seville, Spain.
Stud Health Technol Inform. 2022 Jun 6;290:689-693. doi: 10.3233/SHTI220166.
Due to the presence of high glucose levels, diabetes mellitus (DM) is a widespread disease that can damage blood vessels in the retina and lead to loss of the visual system. To combat this disease, called Diabetic Retinopathy (DR), retinography, using images of the fundus of the retina, is the most used method for the diagnosis of Diabetic Retinopathy. The Deep Learning (DL) area achieved high performance for the classification of retinal images and even achieved almost the same human performance in diagnostic tasks. However, the performance of DL architectures is highly dependent on the optimal configuration of the hyperparameters. In this article, we propose the use of Neuroevolutionary Algorithms to optimize the hyperparameters corresponding to the DL model for the diagnosis of DR. The results obtained prove that the proposed method outperforms the results obtained by the classical approach.
由于高血糖水平的存在,糖尿病(DM)是一种广泛存在的疾病,它会损害视网膜中的血管,导致视觉系统丧失。为了对抗这种疾病,即糖尿病性视网膜病变(DR),眼底摄影术是使用视网膜眼底图像进行诊断的最常用方法。深度学习(DL)领域在视网膜图像分类方面取得了很高的性能,甚至在诊断任务中达到了几乎与人类相同的水平。然而,DL 架构的性能高度依赖于超参数的最佳配置。在本文中,我们提出使用神经进化算法来优化用于 DR 诊断的 DL 模型的超参数。所得到的结果证明,所提出的方法优于经典方法的结果。