School of Natural Sciences - Chemistry, University of Tasmania, Private Bag 75. Hobart, Tasmania 7001, Australia.
Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045-7582, USA.
Dalton Trans. 2022 Jun 21;51(24):9377-9384. doi: 10.1039/d2dt00759b.
The synthesis of benzofurans by the reaction of the palladium(II) complex Pd{1-CH-2-OCH(COEt)-C,C}(bipy) (bipy = 2,2'-bipyridine) with hypervalent iodine(III) reagents [Ph(CHCHR)I] has been examined by Density Functional Theory. Results highlight the role of oxidative alkenylation to form Pd intermediates and the role of initial adduct formation in this process, an annulation process facilitated by Pd, and the role of 'chain-walking' at Pd centres to allow formation of the lowest energy product. Computation (R = Me) allows assignment of an initially formed adduct with a 'Pd → I' interaction at -50 °C, and, after oxidative alkenylation of Pd and reductive elimination from a Pd centre Ar⋯Alkenyl coupling, formation of a second intermediate with a structure consistent with NMR detection (R = -hexyl) at -30 °C is obtained. This Pd complex, containing a coordinated alkene group in Pd{1-(RHCC)CH-2-OCH(COEt)-η-CC,C}(bipy), undergoes a 5--trig annulation by forming a C-C bond to give a complex with a bicyclic carbon skeleton suitable for subsequent formation of benzofurans. A series of facile rearrangements including chain-walking results in formation of a lowest energy complex of three feasible hydrido(alkene)palladium(II) species, leading to decomposition and release of the observed benzofuran isomer isolated under synthesis conditions. The computational study allows reinterpretation of the NMR data reported previously, in particular the determination of barriers in the reaction pathway allowing assignment of structure for key intermediates.
通过密度泛函理论研究了钯(II)配合物 Pd{1-CH-2-OCH(COEt)-C,C}(bipy)(bipy=2,2'-联吡啶)与高价碘(III)试剂[Ph(CHCHR)I]反应合成苯并呋喃。结果突出了氧化烯丙基化形成 Pd 中间体的作用以及初始加合物形成在该过程中的作用,这是一个由 Pd 促进的环化过程,以及 Pd 中心的“链行走”作用,允许形成最低能量产物。计算(R = Me)允许在-50°C 下分配最初形成的具有“Pd→I”相互作用的加合物,并且在 Pd 中心的氧化烯丙基化和从 Pd 中心进行的还原消除之后,形成具有与 NMR 检测(R = -己基)一致的结构的第二个中间体在-30°C 下获得。该 Pd 配合物含有配位的烯丙基基团 Pd{1-(RHCC)CH-2-OCH(COEt)-η-CC,C}(bipy),通过形成 C-C 键进行 5--三键环化,得到具有适合随后形成苯并呋喃的双环碳骨架的配合物。一系列简单的重排包括链行走,导致形成三种可行的氢化物(烯烃)钯(II)物种的最低能量配合物,导致观察到的苯并呋喃异构体在合成条件下分解并释放。计算研究允许重新解释以前报道的 NMR 数据,特别是确定反应途径中的障碍,允许为关键中间体分配结构。