Venkatesh Ramesh, Gandhi Priyanka, Choudhary Ayushi, Sehgal Gaurang, Godani Kanika, Darade Shubham, Kathare Rupal, Hande Prathiba, Prabhu Vishma, Chhablani Jay
Department of Retina and Vitreous, Narayana Nethralaya, Rajaji Nagar, Bengaluru, Karnataka, India.
Department of Retina and Vitreous, University of Pittsburgh School of Medicine, Medical Retina and Vitreoretinal Surgery, Pittsburg, PA, USA.
Indian J Ophthalmol. 2025 Jan 1;73(Suppl 1):S66-S71. doi: 10.4103/IJO.IJO_1895_24. Epub 2024 Dec 24.
To evaluate various supervised machine learning (ML) statistical models to predict anatomical outcomes after macular hole (MH) surgery using preoperative optical coherence tomography (OCT) features.
This retrospective study analyzed OCT data from idiopathic MH eyes at baseline and at 1-month post-surgery. The dataset was split 80:20 between training and testing. XLSTAT® statistical software (Lumivero, USA) was used to train different ML models on 10°CT parameters: prefoveal posterior cortical vitreous status, epiretinal membrane, intraretinal cysts, foveal retinal pigment epithelium hyperreflectivity, MH basal diameter, MH area (MHA), hole-forming factor, MH index, tractional hole index, and diameter hole index. The most effective statistical model was identified and was further assessed for accuracy, sensitivity, and specificity on a separate testing dataset.
Six ML statistical models were trained on 33,260°CT data points from 3326°CT images of 308 operated MH (300 patients) eyes. Following training and internal validation, the random forest (RF) model achieved the highest accuracy (0.92), precision (0.94), recall (0.97), and F-score (0.96), and lowest misclassification rate. RF model identified the MHA index as the best predictor of post-surgical anatomical success. Following external testing, the RF model confirmed the highest accuracy and lowest misclassification rate (8.8%).
ML-based statistical models can be used to predict MH status after surgery. The RF model was the most accurate ML model, and the MHA index was the best predictor of postoperative hole closure after surgery based on preoperative OCT parameters. These predictions may help with future surgical planning for MH patients.
使用术前光学相干断层扫描(OCT)特征评估各种监督式机器学习(ML)统计模型,以预测黄斑裂孔(MH)手术后的解剖学结果。
这项回顾性研究分析了特发性MH患者术前和术后1个月的OCT数据。数据集按80:20分为训练集和测试集。使用XLSTAT®统计软件(美国Lumivero公司)在10个OCT参数上训练不同的ML模型:黄斑前皮质玻璃体状态、视网膜前膜、视网膜内囊肿、黄斑视网膜色素上皮高反射率、MH基底直径、MH面积(MHA)、裂孔形成因子、MH指数、牵引性裂孔指数和直径裂孔指数。确定最有效的统计模型,并在单独的测试数据集上进一步评估其准确性、敏感性和特异性。
在308只接受手术的MH(300例患者)眼睛的3326张OCT图像的33260个OCT数据点上训练了六种ML统计模型。经过训练和内部验证,随机森林(RF)模型获得了最高的准确率(0.92)、精确率(0.94)、召回率(0.97)和F值(0.96),以及最低的错误分类率。RF模型将MHA指数确定为手术后解剖学成功的最佳预测指标。经过外部测试,RF模型确认了最高的准确率和最低的错误分类率(8.8%)。
基于ML的统计模型可用于预测手术后的MH状态。RF模型是最准确的ML模型,基于术前OCT参数,MHA指数是手术后裂孔闭合的最佳预测指标。这些预测可能有助于未来MH患者的手术规划。