Suppr超能文献

运用飞沫传播模型确定 COVID-19 的感染剂量。

Finding the infectious dose for COVID-19 by applying an airborne-transmission model to superspreader events.

机构信息

Department of Physics, Harvard University, Cambridge, MA, United States of America.

QVT Family Office, New York, NY, United States of America.

出版信息

PLoS One. 2022 Jun 9;17(6):e0265816. doi: 10.1371/journal.pone.0265816. eCollection 2022.

Abstract

We probed the transmission of COVID-19 by applying an airborne transmission model to five well-documented case studies-a Washington state church choir, a Korean call center, a Korean exercise class, and two different Chinese bus trips. For all events the likely index patients were pre-symptomatic or mildly symptomatic, which is when infective patients are most likely to interact with large groups of people. Applying the model to those events yields results that suggest the following: (1) transmission was airborne; (2) superspreading events do not require an index patient with an unusually high viral load; (3) the viral loads for all of the index patients were of the same order of magnitude and consistent with experimentally measured values for patients at the onset of symptoms, even though viral loads across the population vary by a factor of >108. In particular we used a Wells-Riley exposure model to calculate q, the total average number of infectious quanta inhaled by a person at the event. Given the q value for each event, the simple airborne transmission model was used to determined Sq, the rate at which the index patient exhaled infectious quanta and N0, the characteristic number of COVID-19 virions needed to induce infection. Despite the uncertainties in the values of some parameters of the superspreading events, all five events yielded (N0∼300-2,000 virions), which is similar to published values for influenza. Finally, this work describes the conditions under which similar methods can provide actionable information on the transmission of other viruses.

摘要

我们通过将空气传播模型应用于五个记录完善的病例研究来探究 COVID-19 的传播,这些研究包括华盛顿州的一个教堂唱诗班、一个韩国呼叫中心、一个韩国健身班以及两次中国不同的公交车旅行。对于所有事件,可能的初始病例都是无症状或轻度症状,此时感染患者最有可能与大量人群接触。将模型应用于这些事件的结果表明:(1)传播是空气传播的;(2)超级传播事件并不需要一个病毒载量异常高的初始病例;(3)所有初始病例的病毒载量都处于同一数量级,与症状发作时患者的实验测量值一致,尽管人群中的病毒载量差异超过 10^8 倍。特别是,我们使用 Wells-Riley 暴露模型来计算 q,即一个人在事件中吸入的总传染性量子数。给定每个事件的 q 值,我们使用简单的空气传播模型来确定 Sq,即初始病例呼出传染性量子的速率,以及 N0,即引发感染所需的 COVID-19 病毒粒子的特征数量。尽管超级传播事件的某些参数值存在不确定性,但所有五个事件都产生了(N0∼300-2,000 个病毒粒子),这与已发表的流感值相似。最后,这项工作描述了在何种条件下,类似的方法可以提供有关其他病毒传播的可操作信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99be/9182663/0592fc38af04/pone.0265816.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验