Suppr超能文献

使用 MaaSSim 模拟双边移动平台。

Simulating two-sided mobility platforms with MaaSSim.

机构信息

Department of Transport & Planning, TU Delft, Delft, The Netherlands.

Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland.

出版信息

PLoS One. 2022 Jun 9;17(6):e0269682. doi: 10.1371/journal.pone.0269682. eCollection 2022.

Abstract

Two-sided mobility platforms, such as Uber and Lyft, widely emerged in the urban mobility landscape. Distributed supply of individual drivers, matched with travellers via intermediate platform yields a new class of phenomena not present in urban mobility before. Such disruptive changes to transportation systems call for a simulation framework where researchers from various and across disciplines may introduce models aimed at representing the complex dynamics of platform-driven urban mobility. In this work, we present MaaSSim, a lightweight agent-based simulator reproducing the transport system used by two kinds of agents: (i) travellers, requesting to travel from their origin to destination at a given time, and (ii) drivers supplying their travel needs by offering them rides. An intermediate agent, the platform, matches demand with supply. Agents are individual decision-makers. Specifically, travellers may decide which mode they use or reject an incoming offer; drivers may opt-out from the system or reject incoming requests. All of the above behaviours are modelled through user-defined modules, allowing to represent agents' taste variations (heterogeneity), their previous experiences (learning) and available information (system control). MaaSSim is a flexible open-source python library capable of realistically reproducing complex interactions between agents of a two-sided mobility platform. MaaSSim is available from a public repository, along with a set of tutorials and reproducible use-case scenarios, as demonstrated with a series of illustrative examples and a comprehensive case study.

摘要

双边移动平台(如 Uber 和 Lyft)广泛出现在城市交通领域。通过中间平台将个体司机的分布式供应与旅行者相匹配,产生了一类以前城市交通中不存在的新现象。这种对交通系统的颠覆性变化需要一个模拟框架,不同学科的研究人员可以在其中引入旨在代表平台驱动的城市交通复杂动态的模型。在这项工作中,我们提出了 MaaSSim,这是一个轻量级的基于代理的模拟器,再现了两种类型的代理使用的运输系统:(i)旅行者,他们在给定时间请求从其原点到目的地的旅行,以及 (ii) 司机通过提供乘车服务来供应他们的旅行需求。中间代理(平台)将需求与供应相匹配。代理是个体决策者。具体来说,旅行者可以决定他们使用哪种模式或拒绝传入的报价;司机可以选择退出系统或拒绝传入的请求。所有上述行为都是通过用户定义的模块建模的,这允许代表代理的口味变化(异质性)、他们的先前经验(学习)和可用信息(系统控制)。MaaSSim 是一个灵活的开源 Python 库,能够逼真地再现双边移动平台中代理之间的复杂交互。MaaSSim 可从公共存储库中获得,其中包括一系列教程和可重现的用例场景,如一系列说明性示例和全面的案例研究所示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f9/9182263/bff7f70aff78/pone.0269682.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验