Soza-Parra Jaime, Kucharski Rafał, Cats Oded
Transportation & Planning Department, Delft University of Technology, Delft, The Netherlands.
Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland.
Transportmetr A Transp Sci. 2022 Nov 11;20(2):2140022. doi: 10.1080/23249935.2022.2140022. eCollection 2024.
In In this study, we set out to explore how various spatial patterns of travel demand drive the effectiveness of ride-pooling services. To do so, we generate a broad range of synthetic, yet plausible demand patterns. We experiment with the number of attraction centres, the dispersion of destinations around these centres, and the trip length distribution. We apply a strategic ride-pooling algorithm across the generated demand patterns to identify shareability potential using a series of metrics related to ridepooling. Our findings indicate that, under a fixed demand level, vehicle-hour reduction due to ride-pooling can range between 18 and 59%. These results depend on the concentration of travel destinations around the centre and the trip length distribution. Ride-pooling becomes more efficient when trips are longer and destinations are more concentrated. A shift from a monocentric to a polycentric demand pattern is found to have a limited impact on the prospects of ride-pooling.
在本研究中,我们着手探讨出行需求的各种空间模式如何推动拼车服务的有效性。为此,我们生成了一系列广泛的合成但合理的需求模式。我们对吸引中心的数量、这些中心周围目的地的分散程度以及行程长度分布进行了实验。我们在生成的需求模式上应用一种策略性拼车算法,使用一系列与拼车相关的指标来识别可共享性潜力。我们的研究结果表明,在固定需求水平下,拼车导致的车辆小时数减少幅度在18%至59%之间。这些结果取决于中心周围出行目的地的集中程度和行程长度分布。当行程更长且目的地更集中时,拼车会变得更高效。研究发现,从单中心需求模式向多中心需求模式的转变对拼车前景的影响有限。