College of Science, Zhejiang University of Technology, Hangzhou 310023, China.
Department of Physics, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China.
Int J Mol Sci. 2022 May 27;23(11):6033. doi: 10.3390/ijms23116033.
Recent experiments have observed much higher electron-ion collisional ionization cross sections and rates in dense plasmas than predicted by the current standard atomic collision theory, including the plasma screening effect. We suggest that the use of (distorted) plane waves for incident and scattered electrons is not adequate to describe the dissipation that occurs during the ionization event. Random collisions with free electrons and ions in plasma cause electron matter waves to lose their phase, which results in the partial decoherence of incident and scattered electrons. Such a plasma-induced transient spatial localization of the continuum electron states significantly modifies the wave functions of continuum electrons, resulting in a strong enhancement of the electron-ion collisional ionization of ions in plasma compared to isolated ions. Here, we develop a theoretical formulation to calculate the differential and integral cross sections by incorporating the effects of plasma screening and transient spatial localization. The approach is then used to investigate the electron-impact ionization of ions in solid-density magnesium plasma, yielding results that are consistent with experiments. In dense plasma, the correlation of continuum electron energies is modified, and the integral cross sections and rates increase considerably. For the ionization of Mg9+e+1s22s2S→1s21S+2e, the ionization cross sections increase several-fold, and the rates increase by one order of magnitude. Our findings provide new insight into collisional ionization and three-body recombination and may aid investigations of the transport properties and nonequilibrium evolution of dense plasma.
最近的实验观察到,在高密度等离子体中,电子-离子碰撞电离的截面和速率比当前标准原子碰撞理论预测的要高得多,包括等离子体屏蔽效应。我们认为,对于入射和散射电子,使用(扭曲的)平面波来描述电离过程中的耗散是不充分的。等离子体中的随机碰撞会导致自由电子和离子失去电子物质波的相位,从而导致入射电子和散射电子的部分退相干。这种等离子体诱导的连续态电子的瞬态空间局域化显著地改变了连续态电子的波函数,导致等离子体中离子的电子-离子碰撞电离与孤立离子相比大大增强。在这里,我们通过纳入等离子体屏蔽和瞬态空间局域化的影响,发展了一种理论公式来计算微分和积分截面。然后,我们使用这种方法来研究固体密度镁等离子体中的电子碰撞电离离子,得到了与实验一致的结果。在高密度等离子体中,连续态电子能量的相关性被改变,积分截面和速率大大增加。对于 Mg9+e+1s22s2S→1s21S+2e 的电离,电离截面增加了几倍,速率增加了一个数量级。我们的发现为碰撞电离和三体复合提供了新的见解,并可能有助于研究高密度等离子体的输运性质和非平衡演化。