University of Missouri.
Multivariate Behav Res. 2023 May-Jun;58(3):637-657. doi: 10.1080/00273171.2022.2077290. Epub 2022 Jun 10.
Homogeneity of variance (HOV) is a well-known but often untested assumption in the context of multilevel models (MLMs). However, depending on how large the violation is, how different group sizes are, and the variance pairing, standard errors can be over or underestimated even when using MLMs, resulting in questionable inferential tests. We evaluate several tests (e.g., the statistic, Breusch Pagan, Levene's test) that can be used with MLMs to assess violations of HOV. Although the traditional robust standard errors used with MLMs require at least 50 clusters to be effective, we assess a robust standard error adjustment (i.e., the CR2 estimator) that can be used even with a few clusters. Findings are assessed using a Monte Carlo simulation and are further illustrated using an applied example. We show that explicitly modeling the heterogenous variance structures or using the CR2 estimator are both effective at ameliorating the issues associated with the fixed effects of the regression model related to violations of HOV resulting from between-group differences.
方差齐性(HOV)是多层线性模型(MLMs)背景下一个众所周知但经常未经检验的假设。然而,根据违反程度的大小、组间大小的差异以及方差配对情况的不同,即使使用 MLMs,标准误差也可能被高估或低估,从而导致有问题的推断测试。我们评估了几种可与 MLMs 一起使用的测试(例如,统计量、布吕什·佩甘、莱文检验),以评估 HOV 的违反情况。尽管与 MLMs 一起使用的传统稳健标准误差至少需要 50 个群集才能有效,但我们评估了一种稳健标准误差调整(即 CR2 估计量),即使只有几个群集也可以使用。使用蒙特卡罗模拟评估结果,并使用应用示例进一步说明。我们表明,显式地对异质方差结构进行建模或使用 CR2 估计量都可以有效地缓解与回归模型的固定效应相关的问题,这些问题与组间差异导致的 HOV 违反有关。