Suppr超能文献

使用 ResNet50 对结肠胶囊内镜下溃疡性结肠炎严重程度进行自动评估。

Automated evaluation of colon capsule endoscopic severity of ulcerative colitis using ResNet50.

机构信息

Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.

Department of Medical Informatics, Hirosaki University Hospital, Hirosaki, Japan.

出版信息

PLoS One. 2022 Jun 10;17(6):e0269728. doi: 10.1371/journal.pone.0269728. eCollection 2022.

Abstract

Capsule endoscopy has been widely used as a non-invasive diagnostic tool for small or large intestinal lesions. In recent years, automated lesion detection systems using machine learning have been devised. This study aimed to develop an automated system for capsule endoscopic severity in patients with ulcerative colitis along the entire length of the colon using ResNet50. Capsule endoscopy videos from patients with ulcerative colitis were collected prospectively. Each single examination video file was partitioned into four segments: the cecum and ascending colon, transverse colon, descending and sigmoid colon, and rectum. Fifty still pictures (576 × 576 pixels) were extracted from each partitioned video. A patch (128 × 128 pixels) was trimmed from the still picture at every 32-pixel-strides. A total of 739,021 patch images were manually classified into six categories: 0) Mayo endoscopic subscore (MES) 0, 1) MES1, 2) MES2, 3) MES3, 4) inadequate quality for evaluation, and 5) ileal mucosa. ResNet50, a deep learning framework, was trained using 483,644 datasets and validated using 255,377 independent datasets. In total, 31 capsule endoscopy videos from 22 patients were collected. The accuracy rates of the training and validation datasets were 0.992 and 0.973, respectively. An automated evaluation system for the capsule endoscopic severity of ulcerative colitis was developed. This could be a useful tool for assessing topographic disease activity, thus decreasing the burden of image interpretation on endoscopists.

摘要

胶囊内镜已广泛应用于小或大肠病变的非侵入性诊断工具。近年来,已设计出使用机器学习的自动病变检测系统。本研究旨在使用 ResNet50 开发一种用于溃疡性结肠炎全结肠胶囊内镜严重程度的自动系统。前瞻性收集溃疡性结肠炎患者的胶囊内镜视频。将每个单一检查视频文件分为四个部分:盲肠和升结肠、横结肠、降结肠和乙状结肠以及直肠。从每个分割视频中提取 50 张静态图像(576×576 像素)。从静态图像中以每 32 个像素步幅修剪一个补丁(128×128 像素)。总共手动分类了 739,021 个补丁图像到六个类别:0)Mayo 内镜评分(MES)0,1)MES1,2)MES2,3)MES3,4)评估质量不足,5)回肠黏膜。使用 483,644 个数据集训练深度学习框架 ResNet50,并使用 255,377 个独立数据集验证。总共收集了 22 名患者的 31 个胶囊内镜视频。训练和验证数据集的准确率分别为 0.992 和 0.973。开发了一种用于溃疡性结肠炎胶囊内镜严重程度的自动评估系统。这可能是评估拓扑疾病活动的有用工具,从而减轻内镜医生对图像解释的负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cba6/9187078/dc8ae5ae6edf/pone.0269728.g001.jpg

相似文献

9
The role of capsule endoscopy in assessing mucosal inflammation in ulcerative colitis.胶囊内镜在评估溃疡性结肠炎黏膜炎症中的作用。
Expert Rev Gastroenterol Hepatol. 2015 Jan;9(1):47-54. doi: 10.1586/17474124.2014.934359. Epub 2014 Jun 25.

引用本文的文献

2
Artificial Intelligence in Inflammatory Bowel Disease Endoscopy.炎症性肠病内镜检查中的人工智能
Diagnostics (Basel). 2025 Apr 1;15(7):905. doi: 10.3390/diagnostics15070905.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验