Suppr超能文献

具有可调自修复、机械和电气性能的卷曲纤维-PEDOT:PSS 生物材料的制备。

Fabrication of Curli Fiber-PEDOT:PSS Biomaterials with Tunable Self-Healing, Mechanical, and Electrical Properties.

机构信息

Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada.

Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec H3C 3J7, Canada.

出版信息

ACS Biomater Sci Eng. 2023 May 8;9(5):2156-2169. doi: 10.1021/acsbiomaterials.1c01180. Epub 2022 Jun 10.

Abstract

Poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) is a highly conductive, easily processable, self-healing polymer. It has been shown to be useful in bioelectronic applications, for instance, as a biointerfacing layer for studying brain activity, in biosensitive transistors, and in wearable biosensors. A green and biofriendly method for improving the mechanical properties, biocompatibility, and stability of PEDOT:PSS involves mixing the polymer with a biopolymer. Via structural changes and interactions with PEDOT:PSS, biopolymers have the potential to improve the self-healing ability, flexibility, and electrical conductivity of the composite. In this work, we fabricated novel protein-polymer multifunctional composites by mixing PEDOT:PSS with genetically programmable amyloid curli fibers produced by bacteria. Curli fibers are among the stiffest protein polymers and, once isolated from bacterial biofilms, can form plastic-like thin films that heal with the addition of water. Curli-PEDOT:PSS composites containing 60% curli fibers exhibited a conductivity 4.5-fold higher than that of pristine PEDOT:PSS. The curli fibers imbued the biocomposites with an immediate water-induced self-healing ability. Further, the addition of curli fibers lowered the Young's and shear moduli of the composites, improving their compatibility for tissue-interfacing applications. Lastly, we showed that genetically engineered fluorescent curli fibers retained their ability to fluoresce within curli-PEDOT:PSS composites. Curli fibers thus allow to modulate a range of properties in conductive PEDOT:PSS composites, broadening the applications of this polymer in biointerfaces and bioelectronics.

摘要

聚(3,4-亚乙基二氧噻吩)聚苯乙烯磺酸盐(PEDOT:PSS)是一种高导电性、易加工、自修复的聚合物。它已被证明在生物电子应用中很有用,例如作为研究大脑活动的生物界面层,在生物敏感晶体管和可穿戴生物传感器中。一种绿色且生物友好的方法是通过混合聚合物与生物聚合物来改善 PEDOT:PSS 的机械性能、生物相容性和稳定性。通过结构变化和与 PEDOT:PSS 的相互作用,生物聚合物有可能改善复合材料的自修复能力、柔韧性和导电性。在这项工作中,我们通过将 PEDOT:PSS 与细菌产生的可遗传编程的淀粉样卷曲纤维混合来制造新型蛋白质-聚合物多功能复合材料。卷曲纤维是最坚硬的蛋白质聚合物之一,一旦从细菌生物膜中分离出来,就可以形成类似于塑料的薄膜,通过加水可以自我修复。含有 60%卷曲纤维的卷曲-PEDOT:PSS 复合材料的电导率比原始 PEDOT:PSS 高 4.5 倍。卷曲纤维使生物复合材料具有即时的水诱导自修复能力。此外,添加卷曲纤维降低了复合材料的杨氏模量和剪切模量,提高了其与组织界面应用的兼容性。最后,我们表明,经过基因工程改造的荧光卷曲纤维在卷曲-PEDOT:PSS 复合材料中保留了其荧光能力。因此,卷曲纤维可以调节导电 PEDOT:PSS 复合材料中的一系列性能,拓宽了该聚合物在生物界面和生物电子学中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验