Suppr超能文献

从 CMap 的批量表达谱中估计克隆内异质性和亚群变化。

Estimating intraclonal heterogeneity and subpopulation changes from bulk expression profiles in CMap.

机构信息

Department of Computer Science, College of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.

Department of Computer Science, College of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan

出版信息

Life Sci Alliance. 2022 Jun 10;5(10). doi: 10.26508/lsa.202101299. Print 2022 Oct.

Abstract

The connectivity among signatures upon perturbations curated in the CMap library provides a valuable resource for understanding therapeutic pathways and biological processes associated with the drugs and diseases. However, because of the nature of bulk-level expression profiling by the L1000 assay, intraclonal heterogeneity and subpopulation compositional change that could contribute to the responses to perturbations are largely neglected, hampering the interpretability and reproducibility of the connections. In this work, we proposed a computational framework, Premnas, to estimate the abundance of undetermined subpopulations from L1000 profiles in CMap directly according to an ad hoc subpopulation representation learned from a well-normalized batch of single-cell RNA-seq datasets by the archetypal analysis. By recovering the information of subpopulation changes upon perturbation, the potentials of drug-resistant/susceptible subpopulations with CMap L1000 were further explored and examined. The proposed framework enables a new perspective to understand the connectivity among cellular signatures and expands the scope of the CMAP and other similar perturbation datasets limited by the bulk profiling technology.

摘要

在 CMap 文库中经过精心整理的扰动特征之间的连通性为理解与药物和疾病相关的治疗途径和生物过程提供了有价值的资源。然而,由于 L1000 检测法对批量水平表达谱的性质,可能导致对扰动产生反应的克隆内异质性和亚群组成变化在很大程度上被忽视,从而阻碍了连接的可解释性和可重复性。在这项工作中,我们提出了一个计算框架 Premnas,根据从经过良好标准化的单细胞 RNA-seq 数据集批次中通过原型分析学习的特定亚群表示,直接从 CMap 的 L1000 图谱中估计未确定亚群的丰度。通过恢复扰动后亚群变化的信息,进一步探索和检查 CMap L1000 中具有药物抗性/敏感性的亚群潜力。该框架为理解细胞特征之间的连通性提供了新的视角,并扩展了 CMAP 和其他类似的基于批量分析技术的扰动数据集的范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92f2/9187873/246368d19818/LSA-2021-01299_Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验