Suppr超能文献

将化学物质、基因和形态扰动与疾病联系起来。

Linking chemicals, genes and morphological perturbations to diseases.

机构信息

Université Paris Cité, INSERM U1133, CNRS UMR 8251, 75006 Paris, France.

Université Paris Cité, INSERM U1133, CNRS UMR 8251, 75006 Paris, France.

出版信息

Toxicol Appl Pharmacol. 2023 Feb 15;461:116407. doi: 10.1016/j.taap.2023.116407. Epub 2023 Feb 2.

Abstract

The progress in image-based high-content screening technology has facilitated high-throughput phenotypic profiling notably the quantification of cell morphology perturbation by chemicals. However, understanding the mechanism of action of a chemical and linking it to cell morphology and phenotypes remains a challenge in drug discovery. In this study, we intended to integrate molecules that induced transcriptomic perturbations and cellular morphological changes into a biological network in order to assess chemical-phenotypic relationships in humans. Such a network was enriched with existing disease information to suggest molecular and cellular profiles leading to phenotypes. Two datasets were used for this study. Firstly, we used the "Cell Painting morphological profiling assay" dataset, composed of 30,000 compounds tested on human osteosarcoma cells (named U2OS). Secondly, we used the "L1000 mRNA profiling assay" dataset, a collection of transcriptional expression data from cultured human cells treated with approximately 20,000 bioactive small molecules from the Library of Integrated Network-based Cellular Signatures (LINCS). Furthermore, pathways, gene ontology terms and disease enrichments were performed on the transcriptomics data. Overall, our study makes it possible to develop a biological network combining chemical-gene-pathway-morphological perturbation and disease relationships. It contains an ensemble of 9989 chemicals, 732 significant morphological features and 12,328 genes. Through diverse examples, we demonstrated that some drugs shared similar genes, pathways and morphological profiles that, taken together, could help in deciphering chemical-phenotype observations.

摘要

基于图像的高通量筛选技术的进展极大地促进了高通量表型分析,尤其是化学物质对细胞形态扰动的定量分析。然而,理解化学物质的作用机制并将其与细胞形态和表型联系起来仍然是药物发现中的一个挑战。在这项研究中,我们旨在将诱导转录组扰动和细胞形态变化的分子整合到一个生物网络中,以便评估人类的化学-表型关系。该网络中还包含了现有的疾病信息,以提示导致表型的分子和细胞特征。本研究使用了两个数据集。首先,我们使用了“Cell Painting 形态分析测定”数据集,该数据集由 30000 种化合物在人骨肉瘤细胞(命名为 U2OS)上进行测试组成。其次,我们使用了“L1000 mRNA 分析测定”数据集,该数据集是从经过大约 20000 种生物活性小分子处理的培养人细胞的转录表达数据中收集的,这些小分子来自于整合网络细胞特征信号库(LINCS)。此外,对转录组数据进行了途径、基因本体论术语和疾病富集分析。总的来说,我们的研究使得构建一个将化学-基因-途径-形态扰动和疾病关系相结合的生物网络成为可能。该网络包含了 9989 种化学物质、732 个显著的形态特征和 12328 个基因。通过各种实例,我们证明了一些药物具有相似的基因、途径和形态特征,这些特征结合在一起可以帮助解释化学-表型观察结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验