Suppr超能文献

疾病传播建模与分析:综述。

Disease spreading modeling and analysis: a survey.

机构信息

Department of Surgical and Medical Sciences, Magna Graecia University, Catanzaro, 88110, Italy.

Bioinformatics unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013, Italy.

出版信息

Brief Bioinform. 2022 Jul 18;23(4). doi: 10.1093/bib/bbac230.

Abstract

MOTIVATION

The control of the diffusion of diseases is a critical subject of a broad research area, which involves both clinical and political aspects. It makes wide use of computational tools, such as ordinary differential equations, stochastic simulation frameworks and graph theory, and interaction data, from molecular to social granularity levels, to model the ways diseases arise and spread. The coronavirus disease 2019 (COVID-19) is a perfect testbench example to show how these models may help avoid severe lockdown by suggesting, for instance, the best strategies of vaccine prioritization.

RESULTS

Here, we focus on and discuss some graph-based epidemiological models and show how their use may significantly improve the disease spreading control. We offer some examples related to the recent COVID-19 pandemic and discuss how to generalize them to other diseases.

摘要

动机

疾病传播的控制是一个广泛研究领域的关键课题,涉及临床和政治方面。它广泛利用计算工具,如常微分方程、随机模拟框架和图论,以及从分子到社会粒度级别的相互作用数据,来建模疾病的发生和传播方式。2019 年冠状病毒病 (COVID-19) 是一个完美的测试案例,表明这些模型如何通过例如建议疫苗优先排序的最佳策略,帮助避免严重的封锁。

结果

在这里,我们专注于并讨论一些基于图的流行病学模型,并展示它们的使用如何显著改善疾病传播控制。我们提供了一些与最近的 COVID-19 大流行相关的示例,并讨论了如何将其推广到其他疾病。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验